Dynamic Programming

Introduction

* |deais Very Simple..

Avoid calculating the same thing twice, usually by
keeping a table of known results that fills up as
subinstances are solved.

 Dynamic Programming is a bottom-up technique.

We usually start with the smallest, and hence the simplest,
subinstances. By combining their solutions, we obtain the
answers to subinstances of increasing size, until finally we arrive
at the solution of the original instance.

Prof. S.J. Soni - SPCE, Visnagar 2

Calculating the binomial coefficient

* Consider the problem of calculating the binomial
coefficient

n n— 1 n— 1 .
(k)_(ﬁc—l)_l_(.) for all integers n, &k > 0,

mﬂ';'—m!

(

(k) =0 for all integers k& > 0.

=

) =1 for all integers n > 0,

= =

Prof. S.J. Soni - SPCE, Visnagar

Calculating the binomial coefficient

Function C (n,k)
if k=0 or k=n then return 1
else return C (n-1,k-1) + C (n-1,k)

Calculate for C (5,3)
C (4,2), C (4,3)
C(3,1),C(3,2) C(3,2),C(3,3)
C(2,0),C(2,1),C(2,1),C(2,2) C(2,1),C(2,2),C(2,2),C(2,3)

This algorithm calculates same values again & again, so that it is
inefficient algorithm.

Solution using Dynamic Programming

Pascal’s Triangle

0: 1

1: 1 1

2: 1 2 1

3: 1 3 3 1

4. 1 4 6 4 1

5: 1 5 10 10 5 1

6: 1 6 15 20 15 6 1

/: 1 7 21 35 35 21 7 1
8: 1 8 28 56 70 56 28 8 1

Solution using Dynamic Programming

Pascal’s Triangle

O 1 2 3 4 5 ... k-1 k
0:1
1:1 1
2:1 2 1
3:1 3 3 1
4:1 4 6 4 1
51 5 10 10 5 1

n-1: C(n-1,k-1) C(n-1,k)
, C(n,k)

Making Change (2) Problem

* There are several instances of problem in which
greedy algorithm fails to generate answer.

* For example,

There are coins for 1,4 and 6 units. If we have to make
change for 8 units, the greedy algorithm will propose
doing so using one 6-unit coin and two 1-unit coins, for a
total of three coins.

However it is clearly possible to do better than this: we
can give the customer his change using just two 4-unit
coins.

Although the greedy algorithm does not find this
solution, it is easily obtained using dynamic
programming.

Solution using Dynamic Programming

* To solve this problem using DP, we set up a
table c [1...n, 0...N], with one row for each
available denomination and one column for
each amount from 0 to N units.

* |n this table c [i,j] will be the minimum

number of coins required to pay an amount of
j units, O<=j <=N.

 c[i,jl = min (c[i-1,j] , 1+c]i, j - di])

Solution using Dynamic Programming

d1=1
d2=4 2 0 1 2 3 1 2 3 4 2
d3=6 3 0 1 2 3 1 2 1 2 9

c [i,j]l = min (c[i-1,j] , 1+c[i, j - di])

c [2,1] = min (c[1,1], 1+c[2, 1 - 4]) = min(1,Inf) =1
c [2,2] = min (c[1,2], 1+c[2, 2 - 4]) = min(2,Inf) =2
c [2,4] = min (c[1,4], 1+c[2, 4 - 4]) = min(4,1) =1

c [3,8] = min (c[2,8], 1+c[3, 8 - 6]) = min(2,3) =2

Prof. S.J. Soni - SPCE, Visnagar 9

Solution using Dynamic Programming

e Which Coins?
m-nnnnnnn-n

di=1
d2=4 2 0 1 2 3 1 2 3 4 2
d3=6 3 0 1 2 3 1 2 1 2 2

If c[i,j]=cli-1,j], we move up to c]i-1, j]
c[3,8] =c[2,8] , we move on to c[2,8]
Otherwise check c[i,j]=1+c]i,j-di]
so check c[2,8]=1+c[2,8-4] = 1+c[2,4]=2 [select coin]
Again check c[2,4]<>c[1,4] so, c[2,4]=1+c[2,4-4]=1 [select coin]

Prof. S.J. Soni - SPCE, Visnagar 10

Knapsack Problem (2)

 We are given number of objects and knapsack.

* This time, however, we suppose that the
objects may not be broken into smaller pieces,
we may decide either to take an object or to
leave it behind, but we may not take a fraction
of an object.

e Soit’s called Non-fractional knapsack problem
or 0/1 knapsack problem.

Knapsack Problem (2)

 Example for which greedy method cannot
work.

Weight
Value 8 5 5
e W=10

* Greedy method generates the value 8 which is
not optimal.

Prof. S.J. Soni - SPCE, Visnagar 12

Solution using Dynamic Programming

* To solve this problem using DP, we set up a
table V [1...n, 0...W], with one row for each
available object and one column for each
weight from 0 to W.

* |n this table V [i,j] will be the maximum value
of the objects, 0<=j<=W & 1<=i<=n

* V[i,j] = max (VI[i-1,j] , V[i-1, j - wi]+vi)

Prof. S.J. Soni - SPCE, Visnagar

13

Knapsack Problem (2) Example

m____

Weight 1

Value 1 6 18 22 28
Vi/Wi 1 3 3.6 3.67 q
W=11

Prof. S.J. Soni - SPCE, Visnagar 14

Solution using Dynamic Programming
nnnnnnn-nnmm

wl=1,6vi=1

w2=2 v2=6 0o 1 6 7 7 7 7 7 7 7 7 7
w3=5,v3=18 0 1 6 7 7 18 19 24 25 25 25 25
wi4=6,v4=22 0 1 6 7 7 18 22 24 28 29 29 40
w5=7,v5=28 0 1 6 7 7 18 22 28 29 34 35 40

V [i,j] = max (V[i-1,j], VI[i-1, j - wi]+vi)
V [5,11] = max (V[4,11], V[4,11-7] +28)= max(40,35)=40

Prof. S.J. Soni - SPCE, Visnagar 15

Solution using Dynamic Programming
nnnnnnn-nnm

wl=]1, vl=1

w2=2 v2=6 1 7 7 7 7 7 7 7 7 7

w4=6, v4=22
w5=7, v5=28

Which Objects?

If V[i,j]=VI[i-1,j], we move up to V][i-1, j]
V[5,11] =V[4,11], we move on to V[4,11]
Otherwise check V[i,j]=VI[i-1,j-wi]+vi
so check V[4,11]=V][3,11-6]+22 = V[3,5]+22=40 [select object 4]
now check V[3,5]=V[2,5-5]+18=V[2,0]+18=18 [select object 3]

1
1

7 7 18 22 24 28 29 29 40

0 6

w3=5,v3=18 O 1 6 7 7 18 19 24 25 25 25 25
0 6
0 6 7 7 18 22 28 29 34 35 40

Prof. S.J. Soni - SPCE, Visnagar 16

Practice Examples

* Solve following knapsack problem using dynamic
programming algorithm with given capacity W=5,

Weight and Value are as follows :
(2)12))(1110)1(3/20)1(2115)

* Solve the following Knapsack Problem using
Dynamic Programming Method. Write the
equation for solving above problem.

n=5 W=100

Object > 12345

Weight (w) = 10 20 30 40 50
Value (v) 2 20 30 66 40 60

Shortest Paths

Let G = <N,A> be a directed graph; N is a set of
nodes and A is a set of edges.

We want to calculate the length of the shortest
path between each pair of nodes.

Suppose the nodes of G are numbered from 1 to
n, so N=[1,2,...n] and suppose matrix L gives the
length of each edge, with L][i,j]=0 for i=1,2,..n.
L[i,j] >= 0 for all i and j, and L[i,j]==< if the edge
(i,j) does not exist.

Shortest Paths

* The principle of

optimality:

— If k is a node on the shortest path from i to j, then
the part of the path from i to k, and the part from
k to j, must also be optimal.

* We construct matrix D that gives the length of

the shortest pat
D, [i,j] = min(

n between each pair of nodes.

D, ,1i,j], D, 4[i,k]+D,_,[k,j])

Prof. S.J. Soni - SPCE, Visnagar 19

Floyd’s Algorithm

5 oo oo\

0) 15 5

oo O 15

oo 5 Oj
50 O 15 5

30 35 0 15
\15 20 5 Oj

D.[i,j] = min(D, ,[i,jl, D, 4[i,k]+D, 4[k,j])

D,[3,2] = min(Dy[3,2], Dy[3,1]+De[1,2]).= min(Inf, 30+5) = 35

20

Floyd’s Algorithm

50 0 15 5 _
D =1 = ° D,=/50 0 15 5
0 30 0 15 30 35 0 15
A5 e 5 0 15 20 5 0

D.[i,j] = min(D, ,[i,j], D, 4[i,k]+D,_,[k,j])

D,[1,1] = min(Dy[1,1], D4[1,1]+D,[1,1]) = min(0, 0+ 0) = 0
D,[1,2] = min(D,[1,2], Dy[1,1]+D,[1,2]) = min(5, 0+ 5) =5

D,[2,1] = min(D,[2,1], Dy[2,1]+D,[1,1]) = min(50, 50+ 0) = 50

D,[3,2] = min(Dy[3,2], Dy[3,1]+D,[1,2]) = min(Inf, 30+5) = 35

Prof. S.J. Soni - SPCE, Visnagar 21

—
I

Ul O

Floyd’s Algorithm

= 0 s
> D,= 50 O
15 30 35
0) 15 20
‘0 5 20
D,=45 0 15
30 35 0

15 20 5

D, [i,j] = min(D, 4[i,jl, D, {[i,k]+D,_,[k,j])

Prof. S.J. Soni - SPCE, Visnagar

OOOO\

15 5
0 15

5 Oj

10\

5
15

0

22

Practice Example

* Write the equation for finding out shortest path
using Floyd’s algorithm. Use Floyd’s method to
find shortest path for below mentions all pairs.

2 () oo oo
o /7 0 1

L6 o0 o0 O_

Chained Matrix Multiplication

* Recall that the product C of a p x g matrix A
and a g x r matrix B is the p x r matrix given by

q
Clj - kzzl alk bkJ 1<=i<=p, 1<=j<=r

It is clear that a total of pgr scalar multiplications are
required to calculate the matrix product using this
algorithm.
e.g. A(3X5) B(5X4) => C(3X4)

[3X5X4=60 multiplications]

Chained Matrix Multiplication

e Suppose now we want to calculate the product of
more than two matrices.

* Matrix multiplication is associative, so we can
compute the matrix product

M=M; M, .. M
in a number of ways, which all gives the same answer.
M = (((Ml Mz) M3) Mn)
= ((M; M,) (M5 ... M)
= ((M; (M, M;))M_)) and so on.

However matrix multiplication is not commutative, so we are

not allowed to change the order of the matrices in these
arrangements.

CMM - Example

* Suppose for example, we want to calculate the
product ABCD of four matrices, where

A is 13X5, B is 5X89, Cis 89X3 and D is 3X34

Instances

((AB)C)D => AB=5785, (AB)C=3471, ((AB)C)D=1326
=>5785+3471+1326 = 10582 scalar multpls

(AB)(CD) = 54201 A((BC)D) = 4055

(A(BC))D = 2856 A(B(CD)) = 26418

The most efficient method is almost 19 times faster than the slowest.

Prof. S.J. Soni - SPCE, Visnagar 26

CMM - Example

e Number of combinations

T(n) 1 4832 2674440

The values of T(n) are called the Catalan numbers.

Prof. S.J. Soni - SPCE, Visnagar 27

Chained Matrix Multiplication

* Suppose the dimensions of the matrices are given by a vector
d[0..n] such that the matrix M,, 1<=i<=n, is of dimension d.; X d.

We fill the table m;; using the following rules for s=0,1,..., n-1.

s=0:m;=0 1=1,2,....,n
s=1:m;;,, =d,dd;,, i=1,2,....,n-1
1<s<n: ml i+s — min (mlk +mk+1 i+s +d| ld d|+s)

i<=k<i+s

1=1,2,...,n-S

Chained Matrix Multiplication

* Suppose for example, we want to calculate the product ABCD of
four matrices, where

A is 13X5, B is 5X89, Cis 89X3 and D is 3X34
do d1 d2 d3 d4
The vector d is therefore (13, 5, 89, 3, 34).

S:1 . mlll_l_l — dl-ldIdH‘l i:].,z,....,n'l
For s=1, we find
m12 =d0 d1 d2 =13X5X89 = 5785
m23 =d1 d2 d3 =5X89X3 =1335
m34 = d2 d3 d4 = 89X3X34 = 9078

Prof. S.J. Soni - SPCE, Visnagar 29

Chained Matrix Multiplication

1<s<n: m; o= min (my +my,, ;. +d,,d,d;.) i=1,2,...

i+ .)
LI+S i<k <i+s

For s=2, we obtain,
[wWhere 1<s<n=1<2<4 andi=1,2..,4-2, so i=1,2]

[i<=k<i+s = 1<=k<3, so k=1 & k=2]
m13 = min (m11+m23+13X5X3, // for k=1
m12+m33+13X89X3) // for k=2
= min (1530,9256) = 1530

[i<=k<i+s = 2<=k<4, so k=2 & k=3]
m24 = min (M22+m34+5X89X34, // for k=2
m23+m44+5X3X34) // for k=3
= min (24208,1845) = 1845

Prof. S.J. Soni - SPCE, Visnagar

,N-S

30

Chained Matrix Multiplication

1<s<n:m; o= min (my +my,, ;. +d,,d,d;.) i=1,2,..

LIS <=k < i+s

Finally for s=3, we obtain,
[where 1<s<n=1<3<4 andi=1,..,4-3, so i=1 only]

[i<=k<i+s = 1<=k<4, so k=1, k=2, k=3]
m14 = min (m11+m24+13X5X34, // for k=1
m12+m34+13X89X34, // for k=2
m13+m14+13X3X34) // for k=3
= min (4055,54201,2856) = 2856

Prof. S.J. Soni - SPCE, Visnagar

.,N-S

31

Chained Matrix Multiplication

Solution: ((A (B C)) D)

A is 13X5, B is 5X89, Cis 89X3 and D is 3X34
[(BC)=1335 + A(BC)=195 + (A(BC))D=1326] = 2856

Prof. S.J. Soni - SPCE, Visnagar 32

GTU Practice Examples

* Given the four matrix find out optimal sequence
for multiplication D=<5,4,6,2,7>

* Using algorithm find an optimal parenthesization
of a matrix chain product whose sequence of
dimension is (5,10,3,12,5,50,6) (use dynamic
programming).

Longest Common Subsequence
Problem

using
Dynamic Programming

Dynamic programming

* [t is used, when the solution can be recursively
described in terms of solutions to subproblems
(optimal substructure)

* Algorithm finds solutions to subproblems and
stores them in memory for later use

* More efficient than “brute-force methods”,
which solve the same subproblems over and
over again

Longest Common Subsequence (LCS)

Application: comparison of two DNA strings
Ex: X={ABCBDAB},Y={BDCABA}

Longest Common Subsequence:
X=AB C BDAB

Y= BDCAB A

Brute force algorithm would compare each
subsequence of X with the symbols inY

LCS Algorithm

If | X| =m, |Y|=n, then there are 2™
subsequences of x; we must compare each with
Y (n comparisons)

So the running time of the brute-force algorithm
IS O(n 2M)
Notice that the LCS problem has optimal

substructure: solutions of subproblems are parts
of the final solution.

Subproblems: “find LCS of pairs of prefixes of
Xand Y”

LCS Algorithm

First we’ll find the length of LCS. Later we’ll
modify the algorithm to find LCS itself.

Define X;, Y; to be the prefixes of X and Y of
length 1 and j respectively

Define c[i,]] to be the length of LCS of X; and Y,

Then the length of LCS of X and Y will be
c[m,n]

o (ofi-1j-1+1 f il = YTl
el J]_{max(cfi, j—11.cfi—1, j]) otherwise

LCS recursive solution
c[i-1, j—1]+1 if x[i1=y[jl,

cfi, J']=<\ max(c[i, j—1],c[i—1, j]) otherwise

* We start with 1 =] = 0 (empty substrings of x
and y)

» Since X, and Y, are empty strings, their LCS
Is always empty (i.e. ¢[0,0] =0)

» LCS of empty string and any other string Is
empty, so for every i1 and j: c[0, j] =c[1,0] =0

LCS recursive solution

c[i-1 j—-1]+1 it x[1]=Vy[]],
-max(c[l, J-1],c[i-1, J]) otherwise

cli, |]=+

* When we calculate c[1,J], we consider two
cases:

 First case: X[1]=Y[}]: one more symbol in
strings X and Y matches, so the length of LCS
X; and Y; equals to the length of LCS of
smaller strings X;; and Y, , plus 1

LCS recursive solution

c[i-1 j-1]+1 it x[1]=Vy[]].
- max(cll, J-1],c[i-1,]J]) otherwise

cl, J]=+

» Second case: x[1] '=vy[]]

* As symbols don’t match, our solution is not
improved, and the length of LCS(X;, Y;) Is the
same as before (i.e. maximum of LCS(X;, Y_)
and LCS(X, 1,Y)

LCS Example
We’ll see how LCS algorithm works on the
following example:
« X=ABCB
- Y=BDCAB

What is the Longest Common Subsequence
of Xand Y?

LCS(X, Y) = BCB
X=AB C B
Y= BDCAB

Prof. S.J. Soni - SPCE, Visnagar

42

LCS Example (0) ABCB

o BDCAB
Yj B D C A B
0 Xi
A
5 B
3 C
4 B

X=ABCB; m=|X|=4
Y=BDCAB; n=|Y| =5
Allocate array c[4,5]

Prof. S.J. Soni - SPCE, Visnagar 43

LCS Example (1) AB8¢B

j BDCAB

Yj B D C A B

0 X 0 0 0 0 0 0
A

1 0
2 B 0
3 C 0
4 B 0
fori=1tom c[i,0] =0

forj=1ton c[0,j] =0

Prof. S.J. Soni - SPCE, Visnagar 44

LCS Example (2) AB¢B

; BDCAB

Yj @ D C A B

p
Xi

0 | o 0 0 0 0
¥

0o o

0

0

0

if (X ==Y,)

cli,jl = c[i-1,j-1] + 1
else c[i,j] = max(c[i-1,j], cli,j-1]1)

Prof. S.J. Soni - SPCE, Visnagar 45

LCS Example (3) ABCB

Xi

; BDCAB
Y] B D C A B
0 0 0 0 0 0
0 0 0 0
0
0
0
if (X, ==Y,)

cli,jl = c[i-1,j-1] + 1
else c[i,j] = max(c[i-1,j], cli,j-11)

Prof. S.J. Soni - SPCE, Visnagar 46

LCS Example (4) AB¢B

j 3 4 BDCAB
Y] B D C m B
i _
0 0 0 0 \, 0 0
@ 0 0 0 0 1

0

0

0

if (X, ==Y,)

cli,jl = c[i-1,j-1] + 1
else c[i,j] = max(c[i-1,j], c[i,j-1])

Prof. S.J. Soni - SPCE, Visnagar 47

LCS Example (5) AB¢B

; BDCAB
Yj B D C A @
g
Xi

0 0 0 0 0 0

@ 0 0 0 0 1 41
0
0
0
if (X, ==Y,)

cli,jl = c[i-1,j-1] + 1
else c[i,j] = max(c[i-1,j], cli,j-11)

Prof. S.J. Soni - SPCE, Visnagar 48

j

Xi

LCS Example (6)

Yj ﬁ\’ D C A
N
0 0 0 0 0
0 0 0 0 1
N
N
0 1
0
0
if (X ==Y,)

cli,jl = c[i-1,j-1] + 1
else c[i,j] = max(c[i-1,j], c[i,j-1])

Prof. S.J. Soni - SPCE, Visnagar

ABCB
BDCAB

49

LCS Example (7) AP¢5

j BDCAB
Yj B D C D B
Xi
0 0 0 0 0 0
0 0 0 0 1 1
—» —» R
0 1 1 1 1
0
0
if (X ==Y,)

cli,jl = c[i-1,j-1] + 1
else c[i,j] = max(c[i-1,j], cli,j-11)

Prof. S.J. Soni - SPCE, Visnagar 50

j

LCS Example (8)

ABCB
BDCAB

Yj B D C A
Xi

0 0 0 0 0 0
A

0 0 0 0 1 \1

0 1 1 1 1 2

0

0

if (X, ==Y,)

cli,jl = c[i-1,j-1] + 1
else c[i,j] = max(c[i-1,j], c[i,j-1])

Prof. S.J. Soni - SPCE, Visnagar 51

j

Xi

LCS Example (10)

ABCB
BDCAB

Yj @ C A
_/

0 0 0 0 0

0 0 0 0 1

0 1 1 1 1
v v

0 1 = 1

0

if (X ==Y,)

cli,jl = c[i-1,j-1] + 1
else c[i,j] = max(c[i-1,j], cli,j-11)

Prof. S.J. Soni - SPCE, Visnagar

52

j

Xi

LCS Example (11)

ABCB
BDCAB

7 B D A
0 0 0 0 0
0 0 0 0 1
0 1 1 1 1

\

N

0 1 1 2
0
if (X ==Y,)

cli,jl = c[i-1,j-1] + 1
else c[i,j] = max(c[i-1,j], c[i,j-1])

Prof. S.J. Soni - SPCE, Visnagar

53

j

Xi

LCS Example (12)

ABCB
BDCAB

Yj B D C A
S

0 0 0 0 0
0 0 0 0 1
0 1 1 1 1
0 1 1 2 —-> 2
0

(X ==Y,)

cli,jl = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], cli,j-11)

Prof. S.J. Soni - SPCE, Visnagar

54

j

Xi

LCS Example (13)

ABCB
BDCAB

Y] B D C A
0 0 0 0 0
0 0 0 0 1
0 1 1 1 1
0 N 1 1 2 2
0 1

if (X, ==Y,)

Prof. S.J. Soni - SPCE, Visnagar

cli,jl = c[i-1,j-1] + 1
else c[i,j] = max(c[i-1,j], c[i,j-1])

55

LCS Example (14) 75¢B

j BDCAB
Yj B D C D B
Xi
0 0 0 0 0 0
0 0 0 0 1 1
0 1 1 1 1 2
0 1 1 2 2 2
v v v
0 1 = 1 2 = 2
if (X, ==Y,)

cli,jl = c[i-1,j-1] + 1
else c[i,j] = max(c[i-1,j], cli,j-11)

Prof. S.J. Soni - SPCE, Visnagar 56

j

Xi

LCS Example (15)

ABCB
BDCAB

Y] B D C A
0 0 0 0 0 0

0 0 0 0 1 1

0 1 1 1 1 2

0 1 1 2 2 2

0 1 1 2 2 @
if (X, ==Y,)

cli,jl = c[i-1,j-1] + 1
else c[i,j] = max(c[i-1,j], c[i,j-1])

Prof. S.J. Soni - SPCE, Visnagar

57

LCS Algorithm Running Time

« LCS algorithm calculates the values of each
entry of the array c[m,n]

* So what Is the running time?

O(m*n)

since each cli,j] is calculated in
constant time, and there are m*n
elements in the array

Prof. S.J. Soni - SPCE, Visnagar 58

How to find actual LCS

 So far, we have just found the length of LCS,
but not LCS itself.

* \We want to modify this algorithm to make it
output Longest Common Subsequence of X
and Y

Each c[1,J] depends on c[i-1,j] and c[i,J-1]
or c[i-1, J-1]
For each c[i,jJ] we can say how it was acquired:

2 | 2 For example, here
N o L
> 3 cli,j] = cli-1,j-1] +1 = 2+1=3

How to find actual LCS - continued

« Remember that
c[i-1, j-1]+1 if x[i]=y[]jl,

cfi, J']=<\ max(c[i, j—1],c[i—1, j]) otherwise

m So we can start from ¢[m,n] and go backwards

m Whenever cfi,j] = c[i-1, j-1]+1, remember x[i]
(because x[i] is a part of LCS)
= When i=0 or j=0 (i.e. we reached the

beginning), output remembered letters in
reverse order

Finding LCS

Y] B D C
0 0 0 0
0 0 0 0
\
0 1 - 1 1
g
0 1 1 2
0 1 1 2

Prof. S.J. Soni - SPCE, Visnagar

61

Finding LCS (2)

j 0 3
i YjBDmAm

Xi N’ N
0 0 0 0 0 0 0

A
1 0 0 0 0 1 1
2 B >

0 1= 1, 1 1 2

3 c 0 1 1 2 <« 2 ’
4 B 0 1 1 2 2 '3

LCS (reversed order): B C B

LCS (straight order): BCB
(this string turned.out to.be a palindrome) .,

GTU Practice Examples

Given two sequences of characters, P=<MLNOM>
Q=<MNOM> Obtain the longest common subsequence.

Find Longest Common Subsequence using Dynamic
Programming Technique with illustration X={A,B,C,B,D,A,B}
Y={B,D,C,A,B,A}

Using algorithm determine an Longest Common Sequence
of (A,B,C,D,B,A,C,D,F) and (C,B,A,F)(use dynamic
programming).

Explain how to find out Longest Common Subsequence of
two strings using Dynamic Programming method.Find any
one Longest Common Subsequence of given two strings
using Dynamic Programming. S1=abbacdcba S2=bcdbbcaac

