
EXPLORING GRAPHS

Prof. S. J. Soni
Assistant Professor

Computer Engg. Department
SPCE, Visnagar

By

Design & Analysis of Algorithm (150703)

Graphs and Games: An Introduction

 Consider the game which is one of the many variants of
Nim, also known as the Marienbad Game.

 Initially there is a heap of matches on the table between
two players. [At least two matches]

 The first player may remove as many matches as he
likes, except that he must take at least one and he must
leave at least one.

 Thereafter, each player in turn must remove at least one
match and at most twice the number of matches his
opponent just took.

 The Player who removes the last match wins. There are
no draws.

Graphs and Games: An Introduction

 Suppose that at some stage in this game you find yourself in front

of a pile of five matches.

 Your opponent has just picked up two matches, and now it is your

turn to play.

 You may take one, two, three and four matches: however you may

not take all five.

 What should you do ?

Opponent You ?????

Graphs and Games: An Introduction

5, 4

0, 0 3, 2

2, 1

3, 3

2, 2

1, 1

4, 3

4, 2

Losing Position

Winning Position

Winning Move

Pick up 1

Pick up 2

Pick up 3

Pick up 4

Graphs and Games: An Introduction

 The recursive algorithm can be used to determine

whether a position is winning or losing.

 But the main drawback is, it calculates the same

value over and over.

 So it can be solved using Dynamic Programming

algorithm.

Traversing Trees

 There are three techniques often used.

 Preorder, Postorder and Inorder

 Preconditioning

 If we have to solve several similar instances of the same

problem, it may be worthwhile to invest some time in

calculating auxiliary results that can thereafter be used

to speedup the solution of each instance. This is

preconditioning.

Depth First Search: Undirected Graphs

1

2 3 4

5 6 7 8

Depth First Search: Undirected Graphs

1. dfs(1) initial call

2. dfs(2) recursive call

3. dfs(3) recursive call

4. dfs(6) recursive call

5. dfs(5) recursive call, progress blocked

6. dfs(4) neighbor of node 1 not visited

7. dfs(7) recursive call

8. dfs(8) recursive call, progress blocked

9. There are no more blocks to visit

Depth First Search: Undirected Graphs

1

2 3 4

5 6 7 8

Depth First Search: Undirected Graphs

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

Articulation Points

 A node v of a connected graph is an articulation

point if the subgraph obtained by deleting v and

all the edges incident on v is no longer connected.

 For example, node 1 is an articulation point of the

previously discussed graph; if we delete it, there

remain two connected components {2,3,5,6} and

{4,7,8}.

 A graph G is biconnected (or unarticulated) if it is

connected and has no articulation point.

Finding Articulation Points

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

1

1

2

2

6

6

6

prenum on the left, highest on the right.

Depth First Search: Directed Graphs

1

2 3 4

5 6 7 8

Depth First Search: Directed Graphs

1. dfs(1) initial call

2. dfs(2) recursive call

3. dfs(3) recursive call, progress blocked

4. dfs(4) neighbor of node 1 not visited

5. dfs(8) recursive call

6. dfs(7) recursive call, progress blocked

7. dfs(5) new starting point

8. dfs(6) recursive call, progress blocked

9. There are no more blocks to visit

Depth First Search: Directed Graphs

1

2
4

3
8

7

5

6

Acyclic Graphs: Topological Sorting

(a + b) (c + d) + (a + b) (c - d) Arithmetic Expression

+

x x

+ -

c d

+

a b

Breadth-first Search

 Unlike depth-first search, breadth-first search is not
naturally recursive.

 It is most often used to carry-out a partial
exploration of an infinite (or unmanageably large)
graph, or to find the shortest path from one point to
another point.

 Mostly depth-first search uses push & pop
operations in the order “last come first serve”

 While Breadth-first search uses enqueue & dequeue
operation in the order “first come, first serve”

Breadth-first Search

1

2 3 4

5 6 7 8

Node Visited Q

1 1 2, 3, 4

2 2 3, 4, 5, 6

3 3 4, 5, 6

4 4 5, 6, 7, 8

5 5 6, 7, 8

6 6 7, 8

7 7 8

8 8 --

Breadth-first Search

1

2 43

5 6 7 8

Breadth-first Search - Example

 It is most often used to carry-out a partial
exploration of an infinite (or unmanageably large)
graph, or to find the shortest path from one point to
another point.

 Consider for example the following problem.

 The value 1 is given. To construct other values, two
operations are available:

multiplication by 2 and division by 3.

 For second operation, the operand must be greater than
2 (so we cannot reach 0), and any resulting fraction is
dropped.

Example cont..

1

2

4 8 16

32

5

64

10

128

21

20

3

256

42

7

40

6 12

80

13

84

14

512

85

Multiplication by 2 and Division by 3

10 = 1 X 2 X 2 X 2 X 2 / 3 X 2

13 = 1 X 2 X 2 X 2 X 2 / 3 X 2 X 2 X 2 / 3

Backtracking

 If the graph contains a large number of nodes, and
particularly if it is infinite, it may be wasteful or
infeasible to build it explicitly in computer storage.
E.g. Game of Chess

 In such a situation we use an implicit graph. This is
one for which we have available a description of its
nodes and edges, so relevant parts of the graph
can be built as the search progresses. In this way
computing time is saved whenever the search
succeeds before the entire graph has been
constructed.

Backtracking – Knapsack Problem(3)

; 0

2 ; 3

2,2 ; 6

2,2,2 ; 9

2,2,2,2 ; 12

2,3 ; 8 2,4 ; 9 2,5 ; 13

2,2,3 ; 11 2,2,4 ; 12 2,3,3 ; 13

3 ; 5 4 ; 6 5 ; 10

3,3 ; 10 3,4 ;11 3,5;15 4,4 ; 12

Wi 2 3 4 5

Vi 3 5 6 10

W=8

Suppose that we have n types of object, and that an adequate number

of objects of each type are available.

Branch-and-bound

 Like backtracking, branch-and-bound is a technique

for exploring an implicit directed graph. Again, this

graph is usually acyclic or even a tree.

 This time, we are looking for the optimal solution to

some problem.

Assignment Problem

 In the assignment problem, n agents are to be

assigned n tasks, each agent having exactly one task

to perform.

 If agent i, 1<= i <=n, is assigned task j, 1<= j <=n,

then the cost of performing this particular task will

be cij

 Given the complete matrix of cost, the problem is to

assign agents to tasks so as to minimize the total cost

of executing the n tasks.

Assignment Problem

 For example, suppose three agents a, b and c are to

be assigned tasks 1, 2 and 3, and the cost matrix is

as follows:

1 2 3

a 4 7 3

b 2 6 1

c 3 9 4

 Here, the optimal assignment is a2, b3 and c1,

whose cost is 7 + 1 + 3 = 11

Assignment Problem - Example

 For example, suppose four agents a, b, c and d are to

be assigned tasks 1, 2, 3 and 4, and the cost matrix is

as follows:

1 2 3 4

a 11 12 18 40

b 14 15 13 22

c 11 17 19 23

d 17 14 20 28

Assignment Problem - Example

 Obtain an upper bound, a1, b2, c3, d4

whose cost is 11 + 15 + 19 + 28 = 73

 The optimal solution to the problem cannot cost

more than this.

 Another solution is a4, b3, c2, d1, whose

cost is 40 + 13 + 17 + 17 = 87

 But it’s not improved over the first.

 So, Upper Bound is 73

Assignment Problem - Example

 Now, Obtain a lower bound.

 First find out minimum value from each column. That

is 11 + 12 + 13 + 22 = 58

 Second find out minimum value from each row. That

is 11 + 13 + 11 + 14 = 49

 But it’s not improved over the first.

 So, Upper Bound is 58

Pulling these facts together, we know that the answer to

our instance lies somewhere in [58…73]

Assignment Problem - Example

 For example, suppose four agents a, b, c and d are to

be assigned tasks 1, 2, 3 and 4, and the cost matrix is

as follows:

1 2 3 4

a 11 12 18 40

b 14 15 13 22

c 11 17 19 23

d 17 14 20 28

Upper Bound

Upper Bound

Lower Bound

Lower Bound

Assignment Problem - Example

1 2 3 4

a 11 12 18 40

b 14 15 13 22

c 11 17 19 23

d 17 14 20 28

a 2

a 3

a 1

a 4

11 + 14 + 13 + 22 = 60

12 + 11 + 13 + 22 = 58

18 + 11 + 14 + 22 = 65

40 + 11 + 14 + 13 = 78 *

[58…73]

Assignment Problem - Example

1 2 3 4

a 11 12 18 40

b 14 15 13 22

c 11 17 19 23

d 17 14 20 28

a 2

a 3

a 1

a 4

60

65

78 *

[58…73]

b 3

b 4

b 1

13+12+11+23 = 59

22+12+11+19= 64

14+12+19+23 = 68

Assignment Problem - Example

1 2 3 4

a 11 12 18 40

b 14 15 13 22

c 11 17 19 23

d 17 14 20 28

a 2

a 3

a 1

a 4

60

65 *

78 *

[58…73]

b 3

b 4

b 1

64 *

68 *
c 1, d4

c 4, d1

64

65 *

a2

a3

a4

a1

a1, b2

a1, b3

a1, b4

a2, b1

a2, b3

a2, b4

a1, b3, c2, d4

a1, b3, c4, d2

a2, b3, c1, d4

a2, b3, c4, d1

65 *

78 *

64 *

69 *

64 *

65 *

66 *

68 *

68 *

61

To obtain the correct answer, we constructed just 15 of the 41 nodes.

1 2 3 4

a 11 12 18 40

b 14 15 13 22

c 11 17 19 23

d 17 14 20 28

