Chapter 1

Probability

1.1 INTRODUCTION

The study of probability stems from the analysis of certain games of chance, and it has found
applications in most branches of science and engineering. In this chapter the basic concepts of prob-
ability theory are presented.

1.2 SAMPLE SPACE AND EVENTS
A. Random Experiments:

In the study of probability, any process of observation is referred to as an experiment. The results
of an observation are called the outcomes of the experiment. An experiment is called a random experi-
ment if its outcome cannot be predicted. Typical examples of a random experiment are the roll of a
die, the toss of a coin, drawing a card from a deck, or selecting a message signal for transmission from
several messages.

B. Sample Space:

The set of all possible outcomes of a random experiment is called the sample space (or universal
set), and it is denoted by S. An element in S is called a sample point. Each outcome of a random
experiment corresponds to a sample point.

EXAMPLE 1.1 Find the sample space for the experiment of tossing a coin (a) once and (b) twice.
(@) There are two possible outcomes, heads or tails. Thus
S=({H,T)
where H and T represent head and tail, respectively.
(b) There are four possible outcomes. They are pairs of heads and tails. Thus
S =(HH, HT, TH, TT)
EXAMPLE 1.2 Find the sample space for the experiment of tossing a coin repeatedly and of counting the number
of tosses required until the first head appears.
Clearly all possible outcomes for this experiment are the terms of the sequence 1, 2, 3,.... Thus
§=1{1,2,3..)

Note that there are an infinite number of outcomes.

EXAMPLE 1.3 Find the sample space for the experiment of measuring (in hours) the lifetime of a transistor.
Clearly all possible outcomes are all nonnegative real numbers. That is,
S={r:0< 1< »}

where 1 represents the life of a transistor in hours.

Note that any particular experiment can often have many different sample spaces depending on the observ-
ation of interest (Probs. 1.1 and 1.2). A sample space § is said to be discrete if it consists of a finite number of
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sample points (as in Example 1.1) or countably infinite sample points (as in Example 1.2). A set is called countable
if its elements can be placed in a one-to-one correspondence with the positive integers. A sample space § is said
to be continuous if the sample points constitute a continuum (as in Example 1.3).

C. Events:

Since we have identified a sample space S as the set of all possible outcomes of a random experi-
ment, we will review some set notations in the following.
If  is an element of S (or belongs to S), then we write

{eS

If S is not an element of § (or does not belong to §), then we write

(¢S
A set A is called a subset of B, denoted by .
AcB

if every element of A4 is also an element of B. Any subset of the sample space § is called an event. A
sample point of § is often referred to as an elementary event. Note that the sample space § is the
subset of itself, that is, S = §. Since § is the set of all possible outcomes, it is often called the certain
event,

EXAMPLE 1.4 Consider the experiment of Example 1.2. Let 4 be the event that the number of tosses required
until the first head appears is even. Let B be the event that the number of tosses required until the first head
appears is odd. Let C be the event that the number of tosses required until the first head appears is less than .
Express events 4, B, and C.

A=1{246, ..}
B={l,3,5..}
C={1,234

1.3 ALGEBRA OF SETS
A. Set Operations:
1. Egquality:
Two sets 4 and B are equal, denoted A = B, ifand onlyif A =« Band B c A.
2. Complementation:

Suppose A < S. The complement of set A, denoted A, is the set containing all elements in S but
not in A.

A={(:{eSand { ¢ A}
3. Union:

The union of sets A and B, denoted A U B, is the set containing all elements in either 4 or B or
both.

AuB={{:{eAor{e B}
4. Intersection:

The intersection of sets A and B, denoted 4 n B, is the set containing all elements in both A
and B.

AnB={{:{eAand (€ B}
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5. Null Set:
The set containing no element is called the null set, denoted F. Note that
g=§
6. Disjoint Sets:

Two sets A and B are called disjoint or mutually exclusive if they contain no common element,
thatis,if A n B = .

The definitions of the union and intersection of two sets can be extended to any finite number of
sets as follows:

n
UAI=A1UA2U"'UA

n

={{:{ed orledor [ €A}

mAl'=AIﬁA2ﬁ'..ﬁAn
i=1

={§:CGA,andCeAzand'“CeAn}

Note that these definitions can be extended to an infinite number of sets:

UAdi=4, v, 0uAu .-
i=1
NAi=A, nA,nAyn -

i=1

In our definition of event, we state that every subset of § is an event, including § and the null set
. Then

§ = the certain event
& = the impossible event

If A and B are events in S, then

A = the event that 4 did not occur
A u B = the event that either 4 or B or both occurred
A n B = the event that both A and B occurred

Similarly, if A,, A,, ..., A, are a sequence of events in S, then

n

{J A4; = the event that at least one of the A4; occurred;
i=1

() A; = the event that all of the A; occurred.

B. Venn Diagram:

A graphical representation that is very useful for illustrating set operation is the Venn diagram.
For instance, in the three Venn diagrams shown in Fig. 1-1, the shaded areas represent, respectively,
the events A U B, A n B, and A. The Venn diagram in Fig. 1-2 indicates that B = A and the event
A n B is shown as the shaded area.
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C. ldentities:

By the above set definitions or reference to Fig. 1-1, we obtain the following identities:

5= (1.1)
G =5 (1.2)
A=A (1.3)

Sud=S (1.49)

SnAd= (1.5)

AuAd=S (1.6)

AnA= (1.7)

The union and intersection operations also satisfy the following laws:

Commutative Laws:

AuB=BuUA (1.8)
AnB=BnA (1.9)

Associative Laws:
Au(BuC)=AuBuC (1.10)

ANBAnC)=(An B nC (1.1
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Distributive Laws:

ANnBuC=(AnBu(dn(C (1.12)
AuBnC=(AuBn(4dvu) (1.13)

De Morgan’s Laws:
AuB=AnB (1.14)
AnB=AuUB (1.15)

These relations are verified by showing that any element that is contained in the set on the left side of
the equality sign is also contained in the set on the right side, and vice versa. One way of showing this
is by means of a Venn diagram (Prob. 1.13). The distributive laws can be extended as follows:

=

An ( B,.) = C)(A A B) (1.16)
i=1 i

i=1

Au(ﬁB')= (E\(AUB,J (1.17)
i=1 i=1

Similarly, De Morgan’'s laws also can be extended as follows (Prob. 1.17):

As
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{ i=\

(1.19)
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1.4 THE NOTION AND AXIOMS OF PROBABILITY

An assignment of real numbers to the events defined in a sample space S is known as the prob-
ability measure. Consider a random experiment with a sample space S, and let A be a particular event
defined in S.

A. Relative Frequency Definition:

Suppose that the random experiment is repeated n times. If event A occurs n(A4) times, then the
probability of event A, denoted P(A), is defined as

P(A) = lim %A) (1.20)

A=

where n(A)/n is called the relative frequency of event 4. Note that this limit may not exist, and in
addition, there are many situations in which the concepts of repeatability may not be valid. It is clear
that for any event 4, the relative frequency of A will have the following properties:

1. 0 < n(A)n <1, where n(A)/n =0 if A occurs in none of the n repeated trials and n(A)/n=1if A
occurs in all of the n repeated trials.

2. If A and B are mutually exclusive events, then
n(A u B) = n(A) + n(B)
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and

n(A u B) _ n(A)+1(@
n n n

B. Axiomatic Definition:

Let S be a finite sample space and A be an event in S. Then in the axiomatic definition, the
. probability P(A) of the event A is a real number assigned to A which satisfies the following three
axioms:

Axiom 1: P(4) > 0 (1.21)
Axiom 2: P(S)= 1 (1.22)
Axiom 3: P(A U B)=PA)+P(B) ifAnB= (1.23)

If the sample space § is not finite, then axiom 3 must be modified as follows:

Axiom 3': If A,, A,,... is an infinite sequence of mutually exclusive events in S (4; N 4; = &
for i # j), then

P(D A‘-) = fj P(4) (1.29)

These axioms satisfy our intuitive notion of probability measure obtained from the notion of relative
frequency.

C. Elementary Properties of Probability:

By using the above axioms, the following useful properties of probability can be obtained:

1. P(A)=1— P(A) (1.25)
2. P@)=0 (1.26)
3. P(A)<PB) ifAcB (1.27)
4. PA)<1 (1.28)
5. P(Au B)=P(A) + P(B)— P(A n B) (1.29)
6. IfA,, A,,..., A, are n arbitrary events in S, then

i=1 =1 [E¥] i®j#k

~ (=Y PA N Ay A (1.30)

where the sum of the second term is over all distinct pairs of events, that of the third term is over
all distinct triples of events, and so forth.

7. If A, A;, ..., A, 1s a finite sequence of mutually exclusive events in S (4; N A; = & for i # ),
then

P( U Ai) = Z P(A4) (1.31)
i=1 i=1

and a similar equality holds for any subcollection of the events.
Note that property 4 can be easily derived from axiom 2 and property 3. Since A < S, we have
P(A) < P(5) =1
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Thus, combining with axiom 1, we obtain
0<PA) <1 (1.32)
Property § implies that
P(A U B) < P(A) + P(B) (1.33)
since P(A n B) > 0 by axiom 1.

1.5 EQUALLY LIKELY EVENTS
A. Finite Sample Space:

Consider a finite sample space S with n finite elements

§= {Cn STRTI cn}

where (s are elementary events. Let P({;) = p,. Then

. 0<p<1l i=1,2..n (1.34)
2. ‘glp,-=p;+pz+---+p,ml (1.35)
3 IfA= ‘U:C“ where I is a collection of subscripts, then
P(A)= Y PL)= 2 p: (1.36)
(1A iel

B. Equally Likely Events:

When all elementary events {, (i = 1, 2, ..., n) are equally likely, that is,

Py =Pa—=mn=Py
then from Eq. (1.35), we have
1
pi=; i=12...,n ) (1.37)
A
and P(A) = f%-) (1.38)

where n(A) is the number of outcomes belonging to event A and n is the number of sample points
in §.

1.6 CONDITIONAL PROBABILITY
A. Definition:
The conditional probability of an event A given event B, denoted by P(A4 | B), is defined as

_ P(A n B) ;
PA|B)=—Fp— PB)> 0 (1.39)

where P(A n B)is the joint probability of A and B. Similarly,
Pl =408 b0 (1.40)

P(A)
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is the conditional probability of an event B given event A. From Egs. (1.39) and (1.40), we have
P(A n B) = P(A| B)P(B) = P(B| A)P(A) (1.41)
Equation (1.41) is often quite useful in computing the joint probability of events.
B. Bayes’ Rule:

From Eq. (1.41) we can obtain the following Bayes’ rule:

P4 By = "ELD0 (142
1.7 TOTAL PROBABILITY
The events 4, 4,, ..., A, are called mutually exclusive and exhaustive if
iQA,-=,‘11quu---\_JA,,=S and AAnA;=0 is#j (1.43)
Let B be any event in S. Then
P(B) = i P(Bn A)= i P(B| A)P(A)) (1.44)

i=1 i=1

which is known as the total probability of event B (Prob. 1.47). Let A = A, in Eq. (1.42); then, using
Eq. (1.44), we obtain

P(B|A)P(4))

2, P(B| A)P(4)
i=1

P(4;| B) = )

Note that the terms on the right-hand side are all conditioned on events 4,, while the term on the left

is conditioned on B. Equation (1.45) is sometimes referred to as Bayes' theorem.

1.8 INDEPENDENT EVENTS

Two events A and B are said to be (statistically) independent if and only if

P(A n By = P(A)P(B) (1.46)
It follows immediately that if A and B are independent, then by Egs. (1.39) and (1.40),
P(A|B) = P(A) and P(B|A) = P(B) (1.47)

If two events A4 and B are independent, then it can be shown that A and B are also independent; that
is (Prob. 1.53),

P(A A B) = P(A)P(B) (1.48)
= P(AnB)
Then P(A|B) = B P(A) (1.49)

Thus, if A is independent of B, then the probability of A’s occurrence is unchanged by information as
to whether or not B has occurred. Three events A, B, C are said to be independent if and only if

P(4 n B n C) = P(A)P(B)P(C)
P(A ~ B) = P(A)P(B)
P(4 A C) = P(A)P(C)
P(B n C) = P(B)P(C)

(1.50)
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We may also extend the definition of independence to more than three events. The events 4, 4,, ...,
A, are independent if and only if for every subset {4;, 4;,,..., 4,} (2 € k < n) of these events,

P(A;, n A, n - Ay) = P(A;))P(A,) -+~ P(4,) (1.51)

Finally, we define an infinite sct of events to be independent if and only if every finite subset of these
events is independent.

To distinguish between the mutual exclusiveness (or disjointness) and independence of a collec-
tion of events we summarize as follows:

1. 1If {A,», i=1,2,...,n} is a sequence of mutually exclusive events, then

2

P(OA-') = ): P(A) (1.52)
i=1 i=1

If {4;,i=1,2,...,n} is a sequence of independent events, then

r((14)= [l (1.53)

and a similar equality holds for any subcollection of the events.

Solved Problems

SAMPLE SPACE AND EVENTS

1.1

1.2.

Consider a random experiment of tossing a coin three times.

(@)

(b)
(a)

(b)

Find the sample space S, if we wish to observe the exact sequences of heads and tails
obtained.

Find the sample space S, if we wish to observe the number of heads in the three tosses.
The sampling space S, is given by
S, = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT)

where, for example, HTH indicates a head on the first and third throws and a tail on the second
throw. There are eight sample points in §,.
The sampling space S, is given by

SZ = {Ov lr 2v 3}

where, for example, the outcome 2 indicates that two heads were obtained in the three tosses. The
sample space S, contains four sample points.

Consider an experiment of drawing two cards at random from a bag containing four cards
marked with the integers 1 through 4.

(@)

(b)
(a)

Find the sample space S, of the experiment if the first card is replaced before the second is
drawn.
Find the sample space S, of the experiment if the first card is not replaced.

The sample space S, contains 16 ordered pairs (i, j), 1 €i<4, | <j <4, where the first number
indicates the first number drawn. Thus,

L) 1,2 (L3 (1,4
21 22 23 (249
3.1 (3,2 (3.3 (3,9
40 42 43 449

Sl=



