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Introduction

 Signals whose values at any instant t are determined

by their analytical or graphical description are called

deterministic signals, implying complete certainty

about their values at any moment t. Such signals, which

can be specified with certainty, cannot convey

information.

 Unpredictable message signals and noise waveforms

are examples of random processes that play key roles

in communication systems and their analysis, because

the higher the uncertainty about a signal to be

received, the higher its information content.



Concept of Probability

 The term experiment is used in probability theory to 

describe a process whose outcome cannot be fully 

predicted because the conditions under which it is 

performed cannot be predetermined with sufficient 

accuracy and completeness.

 Tossing a coin, rolling a die, and drawing a card from a 

desk are some examples of such experiment.

 An experiment may have several separately 

identifiable outcomes. For example, rolling a die has 

six possible identifiable outcomes (1,2,3,4,5, and 6).



Concept of Probability

 An event is a subset of outcomes that share some 

common characteristics.

 In the experiment of rolling a die, for example, the 

event “odd number on a throw” can result from any 

one of three outcomes (e.g. 1,3, or 5).

 Thus, events are grouping of outcomes into classes 

among which we choose to distinguish.



Sample Space

 The sample space S is a 
collection of all possible 
and separately 
identifiable outcomes of 
an experiment.

 Each outcome is an element or sample point.

 In case of rolling a die, the sample space consists of six 
samples points as shown in fig.

 The event “an odd number is thrown” denoted by A0.

 The event “an even number is thrown” denoted by Ae.

 The event “a number equal to or less than 4 is thrown” as B.



Complement, Union and Intersection of Events

 The complement of any event A, denoted by Ac, is 
the event containing all points not in A.

 The union of events A & B, denoted by A U B, is the 
event that contains all points in A and B.

 The intersection of events A & B, denoted by A∩B, 
is the event that contains points common to A and B. 



Examples

 Two dices are thrown. Determine the probability that the 
sum on the dice is seven.

For this experiment,  the sample space contains 36 
sample points because 36 possible outcomes exists. All 
outcomes are equally likely. Hence the probability of 
each outcome is 1/36.

A sum of seven can be obtained by the six 
combinations: (1,6), (2,5), (3,4), (4,3), (5,2), & (6,1)

P(“a seven is thrown”) = 1/36+ 1/36+ 1/36+ 

1/36+ 1/36+ 1/36 

= 6/36 = 1/6



Examples

 A coin is tossed four times in succession. Determine the 

probability of  obtaining exactly two heads.

A total of 24=16 distinct outcomes are possible. Hence 

the sample space consists of 16 points, each with 

probability 1/16. The 16 outcomes are as follows.

HHHH, HHHT, HHTH, HHTT, HTHH, HTHT, HTTH, HTTT

TTTT, TTTH, TTHT, TTHH, THTT, THTH, THHT, THHH

so, P(“obtaining exactly two heads”) = 6/16 = 3/8



Conditional Probability

 The conditional probability  P(B|A)  to denote the 

probability of event B when it is known that event A 

has occurred. 

 P(B|A) is read as “probability of B given A”.

 P(A ∩ B) = P(A) P(B|A) and P(B|A)= P(A ∩ B)/P(A)

 P(A|B)= P(A ∩ B)/P(B)



Example

 An experiment consists of drawing two cards from a 

desk in succession (without replacing the first card 

drawn). Assign a value to the probability of 

obtaining two red aces in two cards.

 Let A and B be the events “red ace in first draw” 

and “red ace in second draw” respectively.

 We wish to determine P(A ∩ B), 

where P(A ∩ B) = P(A) P(B|A)



Example

 The relative frequency of A is 2/52 = 1/26.

 Hence, P(A) = 1/26

 Also for P(B|A) = 1/51

 Hence,

P(A ∩ B) = (1/26) (1/51) = 1/1326



Discrete Random Variable

 The outcome of an experiment may be a real 

number (as in the case of rolling a die), or it may be 

nonnumerical and describable by a phrase (such as 

“heads” or “tail” in tossing a coin).

 From a mathematical point of view, it is simpler to 

have numerical values for all outcomes.

 For this reason, we assign a real number to each 

sample point according to some rule.



Probabilities in a coin-tossing experiment

 Here, we may assign the number 1 for the outcome 

heads and the number -1 for the outcome tails.



Random Variable

 We have a random variable x that takes on values x1, 
x2, …, xn. We shall use roman type (x) to denote a 
random variable (RV) and italic type (e.g. x1, x2, …, 
xn) to denote the value it takes.

 The probability of an RV x taking a value xi is 

PX(xi) = Probability of “X=xi”

 Random Variable (RV): A finite single valued 
function that maps the set of all experimental 
outcomes into the set of real numbers R is said to 
be a RV, if the set is an event for every x in R.



Example

 Two dices are thrown. The sum of  the points appearing on the two 

dices is an RV x. Find the values taken by x, and the corresponding 

probabilities.

 Here, x can take on all integral values from 2 through 12.

 There are 36 sample points in all, each with probability 1/36. 

 Note in the table that although there are 36 sample points, they 

all map into 11 values of x.



Example

Values of xi Dice Outcomes PX(xi)

2 (1,1) 1/36

3 (1,2), (2,1) 2/36 = 1/18

4 (1,3), (2,2), (3,1) 3/36 = 1/12

5 (1,4), (2,3), (3,2), (4,1) 4/36 = 1/9

6 (1,5), (2,4), (3,3), (4,2), (5,1) 5/36 

7 (1,6), (2,5), (3,4), (4,3), (5,2), (6,1) 6/36 = 1/6

8 (2,6), (3,5), (4,4), (5,3), (6,2) 5/36

9 (3,6), (4,5), (5,4), (6,3) 4/36 = 1/9

10 (4,6), (5,5), (6,4) 3/36 = 1/12

11 (5,6), (6,5) 2/36 = 1/18

12 (6,6) 1/36



Cumulative Distribution Function (CDF)

 The cumulative distribution function (CDF) Fx(x) of 
an RV x is the probability that x takes a value less 
than or equal to x; that is,

Fx(x) = P (x <= x)

 CDF Fx(x) has the following four properties:

1.  Fx(x) >=0

2.  Fx(∞) = 1

3.  Fx(-∞) = 0

4.  Fx(x) is a nondecreasing function, that is,

Fx(x1) <= Fx(x2) for x1 <= x2



CDF Example

 In an experiment, a trial consists of four successive 

tosses of a coin. If we define an RV x as the number 

of heads appearing in a trial, determine Px(x) and 

Fx(x).

 A total of 16 distinct equiprobable outcomes are 

listed in earlier example. (slide no. 8)

 A table can be formulated to find Px(x).



CDF Example
Values of xi Dice Outcomes PX(xi) FX(xi)

0 TTTT 1/16 1/16 + 0 = 1/16

1 HTTT, TTTH, TTHT, THTT 4/16 = 1/4 1/16 + ¼ = 5/16

2 HHTT, HTHT, HTTH, TTHH, THTH, THHT 6/16 = 3/8 5/16+3/8=11/16

3 HHHT, HHTH, HTHH, THHH 4/16 = 1/4 11/16+1/4=15/16

4 HHHH 1/16 15/16+1/16 =1

(a) Probabilities Px(xi) and (b) the cumulative distribution function (CDF).



Continuous Random Variables

 A continuous RV x can assume any value in a certain 

interval.

 In a continuum of any range, an uncountably infinite 

number of possible values exist, and Px(xi), the 

probabilities that x = xi , as one of the uncountably

infinite values, is generally zero.

 Properties of the CDF derived earlier are general 

and are valid for continuous as well as discrete RVs.



Probability Density Function (PDF)

 Probability density function can be describe as 

follows:

 The function px(x) is called the probability density 

function (PDF) of the RV x.
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(a) Cumulative distribution function (CDF). (b) Probability density function (PDF). 



Gaussian distribution for continuous 

random variables

 A r.v. X is called a normal (or gaussian) r.v. if its pdf

is given by



Gaussian 

distribution

Figure (a) Gaussian PDF. 

(b) Function Q(y). 

(c) CDF of the Gaussian PDF.



Gaussian Density Function with 

two parameters

Gaussian PDF with mean m and variance σ2. 



Poisson Distribution

 A r.v. X is called a Poisson r.v. with parameter A (> 

0) if its pdf is given by

 The corresponding cdf of X



Poisson Distribution

Poisson distribution



Central Limit Theorem

 Under certain conditions, the sum of the large number of 

independent RVs tends to be a Gaussian random variable, 

independent of the probability densities of a variable added. 

The rigorous statement of this tendency is what is known as the 

central limit theorem.



Random/Stochastic Processes

 Here we introduce the concept of a random (or 
stochastic) process. The theory of random processes was 
first developed in connection with the study of 
fluctuations and noise in physical systems. 

 A random process is the mathematical model of an 
empirical process whose development is governed by 
probability laws. 

 Random processes provides useful models for the studies 
of such diverse fields as statistical physics, 
communication and control, time series analysis, 
population growth, and management sciences.



Definition

 A random process is a family of r.v.'s (X(t), t    T) defined on a given 

probability space, indexed by the parameter t, where t varies over an 

index set T.

 Recall that a random variable is a function defined on the sample space 

S. Thus, a random process (X(t), t  T) is really a function of two 

arguments {X(t, c), t    T,  c   S}. For a fixed t(=tk), X(tk, c) = Xk(c) is a r.v. 

denoted by X(tk), as c varies over the sample space S. On the other 

hand, for a fixed sample point ci S, X(t, ci) = Xi(t) is a single function of 

time t, called a sample function or a realization of the process. The 

totality of all sample functions is called an ensemble.

 Of course if both c and t are fixed, X(tk, ci) is simply a real number. 



Classification of Random Processes



Stationary Random Process

Random process for representing a channel noise



Wide-sense Stationary Processes



Ergodic Processes



General Classification

Classification of random processes



Auto-Correlation Function



Cross-Correlation Functions


