
LANGUAGE PROCESSORS

Presented By: Prof. S.J. Soni, SPCE – Visnagar.

Introduction

 Language Processing activities arise due to the

differences between the manner in which a software

designer describes the ideas concerning the behavior

of a software and the manner in which these ideas

are implemented in a computer system.

 The designer expresses the ideas in terms related to

the application domain of the software. To implement

these ideas, their description has to be interpreted

in terms related to the execution domain.

Semantic Gap

 Semantic Gap has many consequences

 Large development time

 Large development effort

 Poor quality of software

Application

Domain

Execution

Domain

Semantic Gap

Specification and Execution Gaps

 The software engineering steps aimed at the use of a
PL can be grouped into

 Specification, design and coding steps

 PL implementation steps

Application

Domain

PL

Domain

Specification Gap

Execution

Domain

Execution Gap

Specification and Execution Gaps

 Specification Gap

 It is the semantic gap between two specifications of the

same task.

 Execution Gap

 It is the gap between the semantics of programs (that

perform the same task) written in different

programming languages.

Language Processors

 “A language processor is a software which bridges a

specification or execution gap”.

 The program form input to a language processor as

the source program and to its output as the target

program.

 The languages in which these programs are written

are called source language and target language,

respectively.

Types of Language Processors

 A language translator bridges an execution gap to
the machine language (or assembly language) of a
computer system. E.g. Assembler, Compiler.

 A detranslator bridges the same execution gap as
the language translator, but in the reverse direction.

 A preprocessor is a language processor which
bridges an execution gap but is not a language
translator.

 A language migrator bridges the specification gap
between two PLs.

Language Processors - Examples

C++

preprocessor
C++ Program C Program

Errors

C++

translator
C++ Program Machine Language

Program

Errors

Interpreters

 An interpreter is a language processor which bridges an

execution gap without generating a machine language program.

 An interpreter is a language translator according to classification.

Application

Domain

PL

Domain

Execution

Domain

Interpreter Domain

Language Processing Activities

 Program Generation Activities

 Program Execution Activities

Program Generation

Program GeneratorProgram

Specification

Program in

target PL

Errors

Application

Domain

Target PL

Domain

Execution

Domain

Program

Generator

Domain

Specification Gap

Program Execution

 Two popular models for program execution are

translation and interpretation.

 Program translation

TranslatorSource

Program

Target

Program

Errors

m/c

language

program

Data

 A program must be translated before it can be executed.

 The translated program may be saved in a file. The saved program may be

executed repeatedly.

 A program must be retranslated following modifications.

Program Execution

 Program interpretation

PC

Errors

Interpreter

Source

Program

+

Data

Memory

PC

CPU

Machine

Language

Program

+

Data

Memory

Interpretation Program execution

Fundamentals of Language Processing

Language Processing = Analysis of SP + Synthesis of TP

Collection of LP components engaged in analysis a source

program as the analysis phase and components engaged in

synthesizing a target program constitute the synthesis phase.

Analysis Phase

 The specification consists of three components:

 Lexical rules which govern the formation of valid lexical units in the source language.

 Syntax rules which govern the formation of valid statements in the source language.

 Semantic rules which associate meaning with valid statements of the language.

 Consider the following example:

percent_profit = (profit * 100) / cost_price;

Lexical units identifies =, * and / operators, 100 as constant, and the remaining strings

as identifiers.

Syntax analysis identifies the statement as an assignment statement with percent_profit

as the left hand side and (profit * 100) / cost_price as the expression on the right

hand side.

Semantic analysis determines the meaning of the statement to be the assignment of

profit X 100 / cost_price to percent_profit.

Synthesis Phase

 The synthesis phase is concerned with the construction of target
language statements which have the same meaning as a source
statement.

 It performs two main activities:

 Creation of data structures in the target program (memory allocation)

 Generation of target code (code generation)

 Example

MOVER AREG, PROFIT

MULT AREG, 100

DIV AREG, COST_PRICE

MOVEM AREG, PERCENT_PROFIT

…

PERCENT_PROFIT DW 1

PROFIT DW 1

COST_PRICE DW 1

Phases and Passes of LP

 Analysis of source statements can not be immediately followed

by synthesis of equivalent target statements due to following

reasons:

 Forward References

 Issues concerning memory requirements and organization of a LP

Analysis

Phase
Source

Program

Target

Program

Errors

Synthesis

Phase

Errors

Language Processor

Lexical Analysis (Scanning)

 It identifies the lexical units in a source statements. It
then classifies the units into different lexical classes, e.g.
id‟s, constants, reserved id‟s, etc. and enters them into
different tables.

 It builds a descriptor, called token, for each lexical unit.
A token contains two fields – class code and number in
class.

 class code identifies the class to which a lexical unit
belongs. number in class is the entry number of the
lexical unit in the relevant table.

 We depict a token as Code # no, e.g. Id # 10

Lexical Analysis (Scanning) - Example

i : integer;

a, b : real;

a := b + i;

Symbol Type Length Address

1 i int

2 a real

3 b real

4 i * real

5 temp real

Note that int i first needed to be converted into real, that is why 4th entry is

added into the table.

Addition of entry 3 and 4, gives entry 5 (temp), which is value b + (i *).

The statement a := b+i; is represented as the string of tokens

Id#2 Op#5 Id#3 Op#3 Id#1 Op#10

Syntax Analysis (Parsing)

 It processes the string of tokens built by lexical analysis to
determine the statement class, e.g. assignment statement, if
statement etc.

 It then builds an IC which represents the structure of a
statement. The IC is passed to semantic analysis to
determine the meaning of the statement.

real

a b

:=

a +

b ia, b : real

a := b + i

Semantic Analysis

 It identifies the sequence of actions necessary to implement the
meaning of a source statement.

 It determines the meaning of a sub tree in the IC, it adds information
to a table or adds an action to the sequence of actions. The analysis
ends when the tree has been completely processed.

:=

a, real +

b, real i, int

:=

a, real +

b, real i*, real

:=

a, real temp, real

Analysis Phase (Front end)

Scanning

Parsing

Semantic

Analysis

Source Program

Tokens

Trees

Lexical

Errors

Syntax

Errors

Semantic

Errors

IC

Symbol Table

Constants Table

Other tables

IR

Synthesis Phase (Back end)

 It performs memory allocation and code generation.

 Memory Allocation

 The memory requirement of an identifier is computed from its type,

length and dimensionality and memory is allocated to it.

 The address of the memory area is entered in the symbol table.

Symbol Type Length Address

1 i int 2000

2 a real 2001

3 b Real 2002

Synthesis Phase (Back end)

 Code Generation
 It uses knowledge of the target architecture, viz. knowledge of

instructions and addressing modes in the target computer, to select the

appropriate instructions.

 The synthesis phase may decide to hold the values of i* and temp in

machine registers and may generate the assembly code.

 a := b + i;

CONV_R AREG, I

ADD_R AREG, B

MOVEM AREG, A

Synthesis Phase (Back end)

Memory

Allocation

Code

Generation

Symbol Table

Constants Table

Other tables

Target

Program

IR

IC

Fundamentals of Language Specification

 PL Grammars

 The lexical and syntactic features of a programming

language are specified by its grammar.

 A language L can be considered to be a collection of

valid sentences.

 Each sentence can be looked upon as a sequence of

words, and each word as a sequence of letters or

graphic symbols acceptable in L.

 A language specified in this manner is known as a

formal language.

Alphabet

 The alphabet of L, denoted by the Greek symbol ∑

is the collection of symbols in its character set.

 We use lower case letters a, b, c, etc. to denote

symbols in ∑

 A symbol in the alphabet is known as a terminal

symbol (T) of L.

 The alphabet can be represented using mathematical

notation of a set, e.g.

∑ = { a, b, …, z, 0, 1, …, 9 }

where {, “,”, } are called meta symbols.

String

 A string is a finite sequence of symbols.

 We represent strings by Greek symbols α, β, γ, etc.

Thus α= axy is a string over ∑

 The length of a string is the number of symbols in it.

 Absence of any symbol is also a string, null string ε.

 Example

α= ab, β=axy

αβ = α.β = abaxy [concatenation]

Nonterminal symbols

 A Nonterminal symbol (NT) is the name of a syntax

category of a language, e.g. noun, verb, etc.

 An NT is written as a single capital letter, or as a

name enclosed between <…>, e.g. A or <Noun>.

 It is a set of symbols not in ∑ that represents

intermediate states in the generation process.

Productions

 A production, also called a rewriting rule, is a rule

of the grammar.

 It has the form

A nonterminal symbol ::= String of Ts and NTs

L.H.S. R.H.S.

e.g. <article> ::= a | an | the

<Noun> ::= boy | apple

<Noun Phrase> ::= <article> <Noun>

Derivation, Reduction and Parse Trees

 A grammar G is used for two purposes, to generate

valid strings of LG and to „recognize‟ valid strings of

LG.

 The derivation operation helps to generate valid

strings while the reduction operation helps to

recognize valid strings.

 A parse tree is used to depict the syntactic structure

of a valid string as it emerges during a sequence of

derivations or reductions.

Derivation

 Let production P1 of grammar G be of the form

P1 : A::= α
and let β be a string such that β = γAθ, then replacement of
A by α in string β constitutes a derivation according to
production P1.

 Example

<Sentence> ::= <Noun Phrase><Verb Phrase>

<Noun Phrase> ::= <Article> <Noun>

<Verb Phrase> ::= <Verb><Noun Phrase>

<Article> ::= a | an | the

<Noun> ::= boy | apple

<Verb> ::= ate

Derivation

 The following strings are sentential forms of LG.

<Noun Phrase> <Verb Phrase>

the boy <Verb Phrase>

<Noun Phrase> ate <Noun Phrase>

the boy ate <Noun Phrase>

the boy ate an apple

sentential

forms

sentence

Reduction

Let production P1 of grammar G be of the form

P1 : A::= α

and let σ be a string such that σ = γAθ, then replacement of α by A
in string σ constitutes a reduction according to production P1.

Step String

0 the boy ate an apple

1 <Article> boy ate an apple

2 <Article> <Noun> ate an apple

3 <Article> <Noun> <Verb> an apple

4 <Article> <Noun> <Verb> <Article> apple

5 <Article> <Noun> <Verb> <Article> <Noun>

6 <Noun Phrase> <Verb> <Article> <Noun>

7 <Noun Phrase> <Verb> <Noun Phrase>

8 <Noun Phrase> <Verb Phrase>

9 <Sentence>

Parse Trees

 A sequence of derivations or reductions reveals the syntactic
structure of a string with respect to G, in the form of a parse tree.

<Sentence> 9

<Noun Phrase> 6 <Verb Phrase> 8

<Article> 1 <Noun> 2

<Article> 4 <Noun> 5

<Verb> 3 <Noun Phrase> 7

the boy ate an apple

Classification of Grammars

 Type-0 grammar (Phrase Structure Grammar)

α ::= β, where both can be strings of Ts and NTs.

But it is not relevant to specification of Prog. Lang.

 Type-1 grammar (Context Sensitive Grammar)

α A β ::= α π β,

But it is not relevant to specification of Prog. Lang.

 Type-2 grammar (Context Free Grammar)

A ::= π, which can be applied independent of its context.

CFGs are ideally suited for PL specifications.

 Type-3 grammar (Linear or Regular Grammar)

A ::= t B | t OR A ::= B t | t

Nesting of constructs or matching of parentheses cannot be
specified using such productions.

Ambiguity in Grammatic Specification

 It implies the possibility of different interpretation of a
source string.

 Existence of ambiguity at the level of the syntactic structure
of a string would mean that more than one parse tree can
be built for the string. So string can have more than one
meaning associated with it.

Ambiguous Grammar

E id | E + E | E * E

Id a | b | c

Assume source

string is a + b * c

a + b * c a + b * c

a *

b c

+ c

a b

+ *

Eliminating Ambiguity – An Example

Unambiguous Grammar

E E + T | T

T T * F | F

F F ^ P | P

P id

id a | b | c

a + b * c

 id + id * id

 P + P * P

 F + P * P

 T + F * F

 E + T * T

 E * T (?? Ambiguous)

a + b * c

 id + id * id

 P + P * P

 F + F * P

 T + T * F

 E + T

 E (Unambiguous)

E

E

T

F

P

id

T

F

P

id

T

F

P

id+ *

E

T

F

P

id

T

F

P

id

T

F

P

id+ *

E

GTU Examples

 List out the unambiguous production rules (grammar)

for arithmetic expression containing +, –, *, / and ^

(exponent).

E E + T | E – T | T

T T * F | T / F | F

F F ^ P | P

P (E) | <id>

Derive string <id> – <id> * <id> ^ <id> + <id>

E E + T

 E – T + T

 T – T + T

 F – T + T

 P – T + T

 <id> – T + T

 <id> – T * F + T

 <id> – F * F + T

 <id> – P * F + T

 <id> – <id> * F + T

 <id> – <id> * F ^ P + T

 <id> – <id> * P ^ P + T

 <id> – <id> * <id> ^ P + T

 <id> – <id> * <id> ^ <id> + T

 <id> – <id> * <id> ^ <id> + F

 <id> – <id> * <id> ^ <id> + P

 <id> – <id> * <id> ^ <id> + <id>

E

E T

E T F

T FT

F FF P

P PP

P

id id id id id– * ^ +

*

^

–

+
Parse Tree

Abstract Syntax Tree

+

id–

*id

id ^

id id

Another Example

 Consider the following grammar:

S a S b S | b S a S | ε

Derive the string abab. Draw corresponding parse

tree. Are these rules ambiguous ? Justify.

PPT is available at

www.worldsj.wordpress.com

