ASSEMBLERS

I Prof. S.J. Soni, SPCE, Visnagar

Design Specifications
I
0 ldentify the information necessary to perform a task

01 Design a suitable data structure to record the
information

1 Determine the processing necessary to obtain and
maintain the information

0 Determine the processing necessary to perform the
task

Synthesis Phase

1 MOVER BREG, ONE

0 Address of the memory word with which name ONE is
associated (depends on source program, so it must be
made available by the analysis phase)

O Machine op codes corresponding to the mnemonic
MOVER (not depends on source program, it depends on
the assembly language)

0 Use two data structures:
O Symbol Table (name, address) — build by analysis phase

O Mnemonic Table (mnemonic, opcode, length)

Analysis Phase

S
0 The primary function is of building of the symbol

table.
0 Concept of “Memory Al

00 To implement memory a
called location counter |

ocation”

location a data structure

|C) is used.

0 The LC is always made to contain the address of the
next memory word in the target program.

0 It is initialized to the constant specified in the START

statement.

0 To update the contents of LC, analysis phase needs
to know lengths of different instructions.

Data structures of the assembler

Mnemonic Table

Mnemonic | Opcode | Length ___
ADD 01 1

SUB 02 1
TP
SP Analysis Synthesis
Phase Phase
\/
AGAIN 104 Symbol Table

N 113

Pass Structure of Assembler
B

01 Two Pass Translation
O It can handle forward references easily.

O LC processing is performed in the first pass and symbol
defined in the program are entered into the symbol
table.

O The second pass synthesizes the target form using the
address information found in the symbol table.

O In effect, the first pass performs analysis of the source
program while the second pass performs synthesis of
the target program.

Two pass assembly
—

Data Structures

- S -

AN /

Intermediate Code

Pass Structure of Assembler
B

0 Single Pass Translation

O LC processing and construction of the symbol table
proceeds as in two pass translation.

O The problem of forward references is tacked using a
process called “backpatching”

O The operand field of an instruction containing a
forward reference is left blank initially. The address of
the forward referenced symbol is put into this field
when its definition is encountered.

o MOVER BREG, ONE [ONE is forward reference]

O Table of Incomplete Instruction (TII)

Advanced Assembler Directives

N
0 ORIGIN
O ORIGIN <address spec>

0 Where <address spec> is an <operand spec> or
<constant>

o This directive indicates that LC should be set to the
address given by <address spec>.

O It is useful when the target program does not consist of
consecutive memory words.

Advanced Assembler Directives

N
0 EQU
O <symbol> EQU <address spec>

0 Where <address spec> is an <operand spec> or
<constant>

O It defines the symbol to represent <address spec>.

0 LTORG

O It permits a programmer to specify where literals
should be placed.

O By default, assembler places it after the END statement

Literals

ADD AREG, FIVE
ADD AREG, ='S? = - -
FIVE DC of 1
(a) (b)

0 At every LTORG statement, as also at the END statement, the
assembler allocates memory to the literals of a literal pool.
The pool contains all literals used in the program since the start
of the program or since the last LTORG statement.

NOOE W -

14
15
16
17
18
19
20
21
22
23
24
25

LOOP

NEXT

START
MOVER
MOVEM
MOVER
MOVER
ADD

LTORG

SUB
BC
STOP
ORIGIN
MULT
ORIGIN
DS
EQU

DS

END

200

AREG, =‘5’
AREG, A
AREG, A
CREG, B
CREG, =1’

ANY, NEXT

='5?

=41’

AREG, =1’
LT, BACK

LOOP+2
CREG, B
LAST+1
1

LOOP

1

=12

200)
201)
202)
203)
204)
210)

211)
212)

214)
215)
216)
204)
217)
218)

219)

+04
+05

+05

+01

+07

+02

+07

+03

+00

214

005
001

219
202

218

001

Design of a Two Pass Assembler
B

0 Tasks performed by the passes of a two pass
assembler are as follows:

0 Pass |
O Separate the symbol, mnemonic opcode, operand fields
O Build the symbol table
O Perform LC processing
O Construct intermediate representation

0 Pass |l

O Synthesis the target program

Pass | of an assembler
B

0 It uses the following data structures:

0 OPTAB — A table of mnemonic opcodes and related
information

O SYMTAB — Symbol Table
O LITTAB — A table of literals used in the program

Data Structures of assembler Pass |
B 5

mnemonic mnemonic

opcode class info symbol address length
MOVER | IS (04,1) LOOP | 202 1
DS DL R#7 NEXT 214 1
START | AD R#11 LAST 216 1
A 217 1

BACK 202 1

DEIAG B | 218 | 1

SYMTAB

literal address literal no
1| =% #1
=']’ #3
3 | =}’ -

LITTAB POOLTAB

Algorithm- Assembler First Pass
B

. loc_cntr ;= 0; (default value)
pooltab_ptr = 1; POOLTAB[1] := I;
littab_ptr := 1,
2. While next statement is not an END statement
(a) If label is present then

this_label := symbol in label field;
Enter (this_label, loc.cntr) in SYMTAB.

(b) If an LTORG statement then
(1) Process literals LITTAB [POOLTAB [pooltab_ptr]] ... LITTAB [lit-

tab_ptr—1] to allocate memory and put the address in the address
field. Update loc_cntr accordingly.

(i1) pooltab_ptr := pooltab_ptr + 1.
(iii) POOLTAB [pooltab_ptr] := littab_ptr,
(c) If a START or ORIGIN statement then
loc_cntr = value specified in operand field;
(d) If an EQU statement then
(i) this_addr := value of <address spec>;
(i1) Correct the symtab entry for this_label to (this_label, this_addr).

(e) If a declaration statement then

(1) code := code of the declaration statement;

(i) size := size of memory area required by DC/DS.
(111) loc_cntr := loc_cntr + size,
(iv) Generate IC (DL, code) ---’.

(f) If an imperative statement then

(1) code := machine opcode from OPTAB;
(i1) loc_cntr := loc_cntr + instruction length from OPTAB,;
(iii) If operand is a literal then
this_literal := literal in operand field;
LITTAB [littab_ptr) := this_literal,
littab_ptr = littab_ptr + 1,
else (i.e. operand is a symbol)
this_entry := SYMTAB entry number of operand;
Generate IC (IS, code)(S, this_entry)’;

3. (Processing of END statement)
(a) Perform step 2(b).
(b) Generate IC ‘(AD,02)".
(¢) Go to Pass II.

Intermediate code for Imperative Statements

We consider two variants of intermediate code which differ in the information con-
tained in their operand fields. For simplicity, the address field is assumed to contain
identical information in both variants.

Variant | and Variant |l

START 200 (AD,O1) (C,200)

Variant | READ A 15,09 (S.01)
LOOP MOVER AREG, A (1S,04) (1)S.,01)
N ; ;
SUB AREG, =‘1’ (1S,02) (1 L,01)
BC GT, LOOP (1S,07) (4)(S,02)
STOP (1S,00)
A DS 1 (DL, 02) (C,1)

LTORG (DL,05)

The first operand is represented by a single digit number which is a code for a reg-
ister (1-4 for AREG-DREG) or the condition code itself (1-6 for LT-ANY). The second
operand, which is a memory operand, is represented by a pair of the form

(operand class, code)

where operand class is one of C, S and L standing for constant, symbol and literal,
respectively (see Fig. 4.12). For a constant, the code field contains the internal repre-
sentation of the constant itself. For example, the operand descriptor for the statement
START 200 is (C, 200). For a symbol or literal, the code field contains the ordinal
number of the operand’s entry in SYMTAB or LITTAB. Thus entries for a symbol
XYZ and a literal =*25" would be of the form (S, 17) and (L, 35) respectively.

Variant |l

This variant differs from variant I of the intermediate code in that the operand fields of
the source statements are selectively replaced by their processed forms (see Fig. 4.13).
For declarative statements and assembler directives, processing of the operand fields
is essential to support LC processing. Hence these fields contain the processed forms.
For imperative statements, the operand field is processed only to identify literal refer-
ences. Literals are entered in LITTAB, and are represented as (L, m) in IC. Symbolic
references in the source statement are not processed at all during Pass I.

START 200 (AD,01) (C,200)
READ A (IS,09) A

LOOP MOVER AREG, A (IS,04) AREG, A
SUB AREG, =‘1’ (IS,02) AREG, (L,01)
BC GT, LOOP (IS,07) GT, LOOP
STOP (IS,00)

A DS 1 (DL,02) (C,1)

LTORG (DL,05)

Comparison of the variants

Pass |

Data
structures

Work
area

(a)

Pass 11

Pass |

Data
structures

Data
Structures

Work
area

Work
area

(b)

Pass 11

Data
structures

Work
area

Memory requirements using (a) variant I, (b) variant [I

Comparison of the variants
B

Variant I of the intermediate code appears to require extra work in Pass I since
operand fields are completely processed. However, this processing considerably sim-
plifies the tasks of Pass II—a look at the IC of Fig. 4.12 confirms this. The functions
of Pass II are quite trivial. To process the operand field of a declaration statement, we
only need to refer to the appropriate table and obtain the operand address. Most dec-
larations do not require any processing, e.g. DC, DS (see Section 4.4.5), and START
statements, while some, e.g. LTORG, require marginal processing. The IC is quite
compact—it can be as compact as the target code itself if each operand reference
like (S, n) can be represented in the same number of bits as an operand address in a
machine instruction.

Comparison of the variants

Variant 1l reduces the work of Pass I by transferring the burden of operand pro-
cessing from Pass I to Pass II of the assembler. The IC is less compact since the
memory operand of a typical imperative statement is in the source form itself. On
the other hand, by making Pass II to perform more work, the functions and memory
requirements of the two passes get better balanced. Figure 4.14 illustrates the advan-
tages of this aspect. Part (a) of Fig. 4.14 shows memory utilization by an assembler
using variant 1 of IC. Some data structures, viz. symbol table, are passed in the
memory while IC is presumably written in a file. Since Pass I performs much more
processing than Pass I1, its code occupies more memory than the code of Pass II. Part

Pass |l of an assembler

OPTAB

SYMTAB LITTAB

Source

Pass |

Target
Program

Program
Listing

Pass |l of an assembler

- r
0 Tables

For efficiency reasons SYMTAB must remain in main memory throughout Passes I
and II of the assembler. LITTAB is not accessed as frequently as SYMTAB, however
it may be accessed sufficiently frequently to justify its presence in the memory. If
memory is at a premium, it is possible to hold only part of LITTAB in the memory
because only the literals of the current pool need to be accessible at any time. For
obvious reasons, no such partitioning is feasible for SYMTAB. OPTAB should be in
memory during Pass I.

Pass |l of an assembler
B

0 Source Program and Intermediate Code

The source program would be read by Pass I on a statement by statement basis. After
processing, a source statement can be written into a file for subsequent use in Pass
II. The IC generated for it would also be written into another file. The target code
and the program listings can be written out as separate files by Pass II. Since all these
files are sequential in nature, it is beneficial to use appropriate blocking and buffering
of records.

