
ASSEMBLERS

Prof. S.J. Soni, SPCE, Visnagar

Design Specifications

 Identify the information necessary to perform a task

 Design a suitable data structure to record the

information

 Determine the processing necessary to obtain and

maintain the information

 Determine the processing necessary to perform the

task

Synthesis Phase

 MOVER BREG, ONE

 Address of the memory word with which name ONE is

associated (depends on source program, so it must be

made available by the analysis phase)

Machine op codes corresponding to the mnemonic

MOVER (not depends on source program, it depends on

the assembly language)

 Use two data structures:

 Symbol Table (name, address) – build by analysis phase

Mnemonic Table (mnemonic, opcode, length)

Analysis Phase

 The primary function is of building of the symbol
table.

 Concept of “Memory Allocation”

 To implement memory allocation a data structure
called location counter (LC) is used.

 The LC is always made to contain the address of the
next memory word in the target program.

 It is initialized to the constant specified in the START
statement.

 To update the contents of LC, analysis phase needs
to know lengths of different instructions.

Data structures of the assembler

Analysis

Phase

Synthesis

Phase

Mnemonic Opcode Length

ADD 01 1

SUB 02 1

Symbol Address

AGAIN 104

N 113

Mnemonic Table

Symbol Table

SP
TP

Pass Structure of Assembler

 Two Pass Translation

 It can handle forward references easily.

 LC processing is performed in the first pass and symbol

defined in the program are entered into the symbol

table.

 The second pass synthesizes the target form using the

address information found in the symbol table.

 In effect, the first pass performs analysis of the source

program while the second pass performs synthesis of

the target program.

Two pass assembly

Pass I Pass II
SP

TP

Intermediate Code

Data Structures

Pass Structure of Assembler

 Single Pass Translation

 LC processing and construction of the symbol table

proceeds as in two pass translation.

 The problem of forward references is tacked using a

process called “backpatching”

 The operand field of an instruction containing a

forward reference is left blank initially. The address of

the forward referenced symbol is put into this field

when its definition is encountered.

MOVER BREG, ONE [ONE is forward reference]

 Table of Incomplete Instruction (TII)

Advanced Assembler Directives

 ORIGIN

ORIGIN <address spec>

Where <address spec> is an <operand spec> or

<constant>

 This directive indicates that LC should be set to the

address given by <address spec>.

 It is useful when the target program does not consist of

consecutive memory words.

Advanced Assembler Directives

 EQU

 <symbol> EQU <address spec>

Where <address spec> is an <operand spec> or

<constant>

 It defines the symbol to represent <address spec>.

 LTORG

 It permits a programmer to specify where literals

should be placed.

 By default, assembler places it after the END statement

Literals

 At every LTORG statement, as also at the END statement, the

assembler allocates memory to the literals of a literal pool.

The pool contains all literals used in the program since the start

of the program or since the last LTORG statement.

Design of a Two Pass Assembler

 Tasks performed by the passes of a two pass

assembler are as follows:

 Pass I

 Separate the symbol, mnemonic opcode, operand fields

 Build the symbol table

 Perform LC processing

 Construct intermediate representation

 Pass II

 Synthesis the target program

Pass I of an assembler

 It uses the following data structures:

OPTAB – A table of mnemonic opcodes and related

information

 SYMTAB – Symbol Table

 LITTAB – A table of literals used in the program

Data Structures of assembler Pass I

Algorithm- Assembler First Pass

Intermediate code for Imperative Statements

Variant I and Variant II

Variant I

Variant II

Comparison of the variants

Comparison of the variants

Comparison of the variants

Pass II of an assembler

Pass II of an assembler

 Tables

Pass II of an assembler

 Source Program and Intermediate Code

