
ASSEMBLERS

Prof. S.J. Soni, SPCE, Visnagar

Design Specifications

 Identify the information necessary to perform a task

 Design a suitable data structure to record the

information

 Determine the processing necessary to obtain and

maintain the information

 Determine the processing necessary to perform the

task

Synthesis Phase

 MOVER BREG, ONE

 Address of the memory word with which name ONE is

associated (depends on source program, so it must be

made available by the analysis phase)

Machine op codes corresponding to the mnemonic

MOVER (not depends on source program, it depends on

the assembly language)

 Use two data structures:

 Symbol Table (name, address) – build by analysis phase

Mnemonic Table (mnemonic, opcode, length)

Analysis Phase

 The primary function is of building of the symbol
table.

 Concept of “Memory Allocation”

 To implement memory allocation a data structure
called location counter (LC) is used.

 The LC is always made to contain the address of the
next memory word in the target program.

 It is initialized to the constant specified in the START
statement.

 To update the contents of LC, analysis phase needs
to know lengths of different instructions.

Data structures of the assembler

Analysis

Phase

Synthesis

Phase

Mnemonic Opcode Length

ADD 01 1

SUB 02 1

Symbol Address

AGAIN 104

N 113

Mnemonic Table

Symbol Table

SP
TP

Pass Structure of Assembler

 Two Pass Translation

 It can handle forward references easily.

 LC processing is performed in the first pass and symbol

defined in the program are entered into the symbol

table.

 The second pass synthesizes the target form using the

address information found in the symbol table.

 In effect, the first pass performs analysis of the source

program while the second pass performs synthesis of

the target program.

Two pass assembly

Pass I Pass II
SP

TP

Intermediate Code

Data Structures

Pass Structure of Assembler

 Single Pass Translation

 LC processing and construction of the symbol table

proceeds as in two pass translation.

 The problem of forward references is tacked using a

process called “backpatching”

 The operand field of an instruction containing a

forward reference is left blank initially. The address of

the forward referenced symbol is put into this field

when its definition is encountered.

MOVER BREG, ONE [ONE is forward reference]

 Table of Incomplete Instruction (TII)

Advanced Assembler Directives

 ORIGIN

ORIGIN <address spec>

Where <address spec> is an <operand spec> or

<constant>

 This directive indicates that LC should be set to the

address given by <address spec>.

 It is useful when the target program does not consist of

consecutive memory words.

Advanced Assembler Directives

 EQU

 <symbol> EQU <address spec>

Where <address spec> is an <operand spec> or

<constant>

 It defines the symbol to represent <address spec>.

 LTORG

 It permits a programmer to specify where literals

should be placed.

 By default, assembler places it after the END statement

Literals

 At every LTORG statement, as also at the END statement, the

assembler allocates memory to the literals of a literal pool.

The pool contains all literals used in the program since the start

of the program or since the last LTORG statement.

Design of a Two Pass Assembler

 Tasks performed by the passes of a two pass

assembler are as follows:

 Pass I

 Separate the symbol, mnemonic opcode, operand fields

 Build the symbol table

 Perform LC processing

 Construct intermediate representation

 Pass II

 Synthesis the target program

Pass I of an assembler

 It uses the following data structures:

OPTAB – A table of mnemonic opcodes and related

information

 SYMTAB – Symbol Table

 LITTAB – A table of literals used in the program

Data Structures of assembler Pass I

Algorithm- Assembler First Pass

Intermediate code for Imperative Statements

Variant I and Variant II

Variant I

Variant II

Comparison of the variants

Comparison of the variants

Comparison of the variants

Pass II of an assembler

Pass II of an assembler

 Tables

Pass II of an assembler

 Source Program and Intermediate Code

