Chapter -3
Interprocess Communication

Message Passing

Message Passing vs Shared Memory
N

—® © ©

Processor— LN L T P

Communication network

Figure 3-1 Typical message-passing operation

Process A (M Process A
1
ohdred memory]2
Process B Eq— Process B
1
2
Kemel [M]— Kernel

Figure 3-2 Message-passing vs. Shared memory approach

Desirable Features of Message Passing

Systems
-—

Hardware approach
Functionality
Performance
Uniform semantics
Efficiency

Reliability
Correctness
Flexibility

Portability

Security

Message passing process
B

Sending Communication Communication Receiving
host server server server
Buffer
i — Routing independent of Routing —
h’hlessffglngh Application program communicating program Application
interface g T / hosts :
Local S— l l;‘f To other (romote) l l — L1
-— —||= communication = = =
buffer =l I.—J\.—J server —_| |_—J |_—J —
0s 0s 0s 0s
Yy ' J - J L
Local network

Incoming massage

Figure 3-3 Message passing operation

Local buffer

IPC message format
B

Message
I
Variable size
Header (data or pointer data)
Stru{:tural EEqUEn{E n I.ll'l‘Ih-Er
Address information Message ID
| | | |
Sender Receiver Message Type
length

Figure 3-4 Components of an IPC message

IPC Message

For lost &
duplicate
message
Structural information Addresses
Actual Type Sequence
data or number or . '
pointer to Number of Data pointer | message Receiving| Sending
the data bytes or to data in the ID RISESSS) process
elements message address | address
- - Fixed-length header -
Variable
size collection
of typed data

Sender and receiver are fully aware of the message formats
used in the communication process and the mechanisms
used to send and receive messages.

Figure 3-5 A typical IPC message structure

IPC synchronization
N

0 Ensure message is received in the buffer:
o Polling
O Interrupt

0 Message communication techniques
O Synchronous communication

O Asynchronous communication

IPC: Synchronous communication

]
e e
T;' —=0
(EE' Synchronous mode of communication with both send
% % and receive primitives having blocking semantics
Figure 3-6 Synchronous communication operation Sender’s Receiver's
execution execution
Send Receive

(receiver-ID, msg)

—-—-——Blocked state
— Executing state

Execution resumed

Message

\

Acknowledgement

(sender-ID, msg)

Suspended

Execution resumed

Figure 3-7 Synchronous communication operation

IPC: Asynchronous communication
—

y
18 B
S

Figure 3-8 Asynchronous communication operation

e 0 {0

IPC primitives
—

Client running - - = Client running
Client blocked
Trap to Return from
kernel, kermel,
PrOCESS Message being sent Process
blocked < = released

Client running =——— Client running

Trap

Message being sent

-
Message copied to kernel buffer

Figure 3-9 Blocking and non-blocking primitives

Message buffering strategies
B

Buffering
schemes

Single-message Infinite-capacity | | Multiple message
Null buffer buffer buffer buffer

Figure 3-10 Buffering schemes

Null buffering

Only one copy operation

1. Message in sender’s space
until receive executed

2. Retransmission on timeout

Synchronous
Sender message Receiver
transfer
Message -

buffer
Figure 3-11 Message transfer with no buffering and single copy operation

Null buffering with blocked receiver

Sender Receiver

Check if receiver
is ready?

Acknowledgement
from the receiver

|
|
|
|
I
Send message
Message

received

Figure 3-12 Null buffering with effective message-passing blocking
mechanism

e T mE T T e Blocked state
Sending process

blocked Executing state

Null buffering with non blocked

receiver
S

Sender Receiver

Request 1

Wait for B
acknowledgement
and timeout period

Request 1-
retransmission

Message
received

Acknowledgement

Figure 3-13 Null buffering with effective message-passing

Message buffering: single buffer

]
Copy 1 Copy 2
h’lessaé\ﬂ&saa(\
/ i

i Single

Sender || Message Receiver
| buffer
| Mode
| boundary

Figure 3-14 Single-message buffering

Message buffering: multiple message

buffer

0 Receiver overflow handled using:

1 Unsuccessful communication indication

0 Flow control mechanism

Sender

Message

N

Message 1

™

Message 2

"y

Message n

- Receiver

Asynchronous message transfer
Figure 3-15 Multiple-message buffering

Multidatagram messaging

N
0 Concept of MTU

0 Message sequencing and reassembly
1 Message contents

1 Message representation: tagged, untagged

Message

Datagram 1}|--|Datagram 2|--—-—-———-—————————— Datagram 3

Datagram size = MTU
Figure 3-16 Multidatagram message

Message data transmission
B

Data En{:ﬂding Decﬂding Data
:i:rnf“m 0110011101100 :i:;‘;t“m
« Linked list Stream of bits + Linked list
Sender’s address Receiver's address
space space

Figure 3-17 Encoding/decoding message data

Process addressing techniques

]
Explicit addressing :send (process_id, message) and
receive (process_id, message)

Implicit addressing:send_any (service_id, message)
and receive_any (service_id, message)

- Two level addressing : machine id@local id (receiver

machine name)

— Three level addressing:
machine id@local id@machine id. (Node where the
process was created @ generated by the first

machine@ last known location of the machine)

mailto:machine_id@local_id
mailto:machine_id@local_id@machine_id

Link-based Process Addressing

_
machine_odl@1local_idl@machine_id1l machine_idl@local_id2@machine_id2
Node 1 Node 2
Mapping Mapping
table table
Process . X
migrates) .

Mew process
ID

Creator node
Figure 3-18 Link-based process addressing

Process migrates
to Node 3

Failure handling mechanism
—

0 IPC problems due to system failures

(a) Request message is lost (b) Response message is lost
Send request Request msg
Receiver Receiver
m‘SE
Message lc:st msg
Lost

(c) Receiver node crash

Send request
Sender = Receiver
Node crash

Figure 3.19 IPC problems due to systemn failures

|IPC Protocols
S

0 4-message reliable IPC protoco

0 3-message reliable IPC protoco

1 2-message reliable IPC protoco

IPC 4 message protocol

Figure 3-20 4-message reliable IPC protocol

IPC 3 message protocol
N

Client Sserver

L Request

rep

Figure 3-21 3-message IPC protocol

IPC 2 message protocol

Figure 3-22 2-message IPC protocol

IPC Failure

Server (receiver)

Client
Send request - Request
Lost
Send request* Eetranstmlt _ Crash restart
eques /
Restransmit —_—r
Send request % 2 Successful
equest request execution
REEP'*____IEE_._. Send response
I‘_{?,__T‘ Lost < Ul
) uccess
Send request % Retransmit request execution
Request
Send response
Time out \/ Response

Figure 3-23 Failure handling mechanism

Case Study: IPC in MACH

Case Study: IPC in MACH

N
0 MACH IPC Components
O Ports
O Messages

0 Message format

0 NetMsgServer

MACH message format
N

Port

f |

Message queue

Y

Message

Message

Y

"/ Destination port \1
Reply port
Size/operation

Pure typed data

Port rights
Out-of-line-data

Message control \/

Memory cache object Memory cache object

|

Port

Figure 3-24 Mach message

Group communication

Group Communication

]
01 Unicast —one to one communication
0 Many-to-one group communication

1 One-to-many or multicast group communication

Unicast group communication
—

Same massage M sent to all nodes

Figure 3-25 Unicast communication

Many to one communication
—

M2 Sender
3

M3

Sender
4

Multiple senders send message to the same receiver

Figure 3-26 Many-to-one communication

Multi cast communication
I e

Figure 3.27 One-to-many communication

Broadcast communication

£ii

Figure 3-28 A broadcast sends a message to all the recipients

Types of Groups
!
0 Closed group
0 Open group
01 Peer group

0 Hierarchical group

Group management
B

0 Centralized approach

0 Distributed approach

Leave

-
Send \ Fill

J]ﬂinp O

Figure 3-29 Group dynamics

Group addressing Message delivery
B

01 High level naming 1 Send to all semantics
0 For large LANs/ 0 Bulletin board
MAN:s: send message semantics

to individual group
members

Reliability mechanism
B

1 Classified based on number of receivers from which
sender expects a response

Reliability
mechanisms

. : m-out-of-n All
0 reliable 1 reliable reliable reliable

Figure 3-30 Reliability mechanisms

Message ordering
N

Message
ordering

Absolute Consistent Causal

Figure 3-31 Types of message ordering

Message ordering: Absolute Ordering
N

S1 R1 R2 S2
- ml m2 t2
t1 < t2
Time
m2

All the messages
are globally
timestamped

Figure 3-32 Absolute ordering

Message ordering: Consistent ordering
N

51 R1 R2 52
t2

t1
m2 11 < t2

m2

Time

ml mi

Figure 3-33 Consistent ordering

Message ordering: Causal ordering
—

Figure 3-34 Causal ordering

Case Study: CBCAST protocol in ISIS

CBCAST protocol

0 S: vector of the sending process attached to the
message

0 R : vector of the receiving process
0 i: sequence number of the sender process

0 Runtime system tests following conditions
oS[i]=RI[i[]+1
o S[j] <= R[j] for j <>

CBCAST protocol in ISIS

(1) S[i]=[i]+1

\ector in a (2) S[i] = R[i] forj <=i
message sent
by process 0

\

State of the vectors at the other machines
- -

NN e oD
|

A= | OO |) =

U= R 00| U] M

U= R 00~ L |

U= |k (2 M

U= O~ n

Accept Delay Accept Delay Accept
Figure 3-35 CBCAST in ISIS

Summary
N

01 Message Passing

0 Case Study: IPC in MACH

0 Group communication

0 Case Study: CBCAST protocol in ISIS

