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Interprocess Communication



Message Passing



Message Passing vs Shared Memory
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Figure 3-1 Typical message-passing operation
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Figure 3-2 Message-passing vs. Shared memory approach



Desirable Features of Message Passing

Systems
-—

Hardware approach
Functionality
Performance
Uniform semantics
Efficiency

Reliability
Correctness
Flexibility

Portability

Security



Message passing process
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Figure 3-3 Message passing operation
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IPC message format
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Figure 3-4 Components of an IPC message



IPC Message
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Sender and receiver are fully aware of the message formats
used in the communication process and the mechanisms
used to send and receive messages.

Figure 3-5 A typical IPC message structure



IPC synchronization
N

0 Ensure message is received in the buffer:
o Polling
O Interrupt

0 Message communication techniques
O Synchronous communication

O Asynchronous communication



IPC: Synchronous communication
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Figure 3-7 Synchronous communication operation




IPC: Asynchronous communication
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IPC primitives
—
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Figure 3-9 Blocking and non-blocking primitives



Message buffering strategies
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Figure 3-10 Buffering schemes



Null buffering
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Figure 3-11 Message transfer with no buffering and single copy operation



Null buffering with blocked receiver
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Figure 3-12 Null buffering with effective message-passing blocking
mechanism
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Null buffering with non blocked
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Figure 3-13 Null buffering with effective message-passing



Message buffering: single buffer
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Figure 3-14 Single-message buffering



Message buffering: multiple message
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Figure 3-15 Multiple-message buffering



Multidatagram messaging

N
0 Concept of MTU

0 Message sequencing and reassembly
1 Message contents

1 Message representation: tagged, untagged

Message
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Figure 3-16 Multidatagram message



Message data transmission
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Figure 3-17 Encoding/decoding message data



Process addressing techniques

]
Explicit addressing :send (process_id, message) and
receive (process_id, message)

Implicit addressing:send_any (service_id, message)
and receive_any (service_id, message)

- Two level addressing : machine id@local id (receiver

machine name)

— Three level addressing:
machine id@local id@machine id. (Node where the
process was created @ generated by the first

machine@ last known location of the machine)


mailto:machine_id@local_id
mailto:machine_id@local_id@machine_id

Link-based Process Addressing
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Figure 3-18 Link-based process addressing
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Failure handling mechanism
—

0 IPC problems due to system failures

(a) Request message is lost (b) Response message is lost
Send request Request msg
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Figure 3.19 IPC problems due to systemn failures




|IPC Protocols
S

0 4-message reliable IPC protoco

0 3-message reliable IPC protoco

1 2-message reliable IPC protoco



IPC 4 message protocol

Figure 3-20 4-message reliable IPC protocol



IPC 3 message protocol
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Figure 3-21 3-message IPC protocol



IPC 2 message protocol

Figure 3-22 2-message IPC protocol



IPC Failure

Server (receiver)

Client
Send request - Request
Lost
Send request* Eetranstmlt _ Crash restart
eques /
Restransmit —_—r
Send request % 2 Successful
equest request execution
REEP'*____IEE_._. Send response
I‘_{?,__T‘ Lost < Ul
) uccess
Send request % Retransmit request execution
Request
Send response
Time out \/ Response

Figure 3-23 Failure handling mechanism



Case Study: IPC in MACH



Case Study: IPC in MACH

N
0 MACH IPC Components
O Ports
O Messages

0 Message format

0 NetMsgServer



MACH message format
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Figure 3-24 Mach message



Group communication



Group Communication

]
01 Unicast —one to one communication
0 Many-to-one group communication

1 One-to-many or multicast group communication



Unicast group communication
—
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Figure 3-25 Unicast communication



Many to one communication
—
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Figure 3-26 Many-to-one communication



Multi cast communication
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Figure 3.27 One-to-many communication

Broadcast communication
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Figure 3-28 A broadcast sends a message to all the recipients



Types of Groups
!
0 Closed group
0 Open group
01 Peer group

0 Hierarchical group



Group management
B

0 Centralized approach

0 Distributed approach
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Figure 3-29 Group dynamics



Group addressing Message delivery
B

01 High level naming 1 Send to all semantics
0 For large LANs/ 0 Bulletin board
MAN:s: send message semantics

to individual group
members



Reliability mechanism
B

1 Classified based on number of receivers from which
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Figure 3-30 Reliability mechanisms



Message ordering
N
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Figure 3-31 Types of message ordering



Message ordering: Absolute Ordering
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Figure 3-32 Absolute ordering



Message ordering: Consistent ordering
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Figure 3-33 Consistent ordering



Message ordering: Causal ordering
—

Figure 3-34 Causal ordering



Case Study: CBCAST protocol in ISIS



CBCAST protocol

0 S: vector of the sending process attached to the
message

0 R : vector of the receiving process
0 i: sequence number of the sender process

0 Runtime system tests following conditions
oS[i]=RI[i[]+1
o S[j] <= R[j] for j <>



CBCAST protocol in ISIS
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Figure 3-35 CBCAST in ISIS



Summary
N

01 Message Passing

0 Case Study: IPC in MACH

0 Group communication

0 Case Study: CBCAST protocol in ISIS



