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Figure 4-1 Role of middleware in remote communication



Remote Procedural Call Basics



Local Procedure Call
S

Stack pointer

Main program’s Main program’s
local variables local variables

Bytes
buf
fd
Return address

Read's local
variable

=« Stack pointer

(a) Before LPC (b) After LPC
Figure 4-2 Local procedure call



Remote Procedure Call
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RPC operation
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Elements of RPC mechanism

implementation
-—

0 Client

0 Client stub
0 RPC Runtime
0 Server stub

0 Server



RPC Execution
S
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Figure 4-5 RPC execution



Stub generation
!
0 Manual generation

0 Auto generation using Interface Definition Language
(IDL)



RPC Compilation
—
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Figure 4-6 Steps for RPC compilation
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RPC implementation
—

0 RPC messages:
o Call / Request
O Reply

@ Request for RPC @

Client Server | RPC
executed
@ Return result

Figure 4-7 RPC messages




RPC Call/ Request message
B
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Figure 4-8 RPC call/request message format



RPC reply conditions
—

Table 4-1 RPC reply message conditions

Condition Response from the server

Server receives an unintelligible call Rejects the call.
message, probably because the call
message has violated the RPC protocol.

Server receives the call messages with Return reply unsuccessful, and
unauthorized client ID, i.e. the client does not execute RPC.

is prevented from making the RPC request.

Server does not any receive procedure ID Return reply unsuccessful,
information from the message ID field— and does not execute RPC.

program number, version number, or ID.

If all the above conditions are satisfied, the | Return reply unsuccessful and
server executes the RPC, but may not be does not execute RPC.
able to decode its arguments due to
incompatible RPC interface.

Server executes the RPC but an exception Return reply unsuccessful.
condition occurs.

Server executes the RPC successfully RPC is successful and the server
without any problems. returns the result.




RPC reply message
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Figure 4-9 RPC reply message format



Parameter Passing Semantics
B

- Call-by-value semantic
— Marshalling

- Call-by —reference semantic

. Call-by-copy /restore semantic

Call-by-value copies all parameters into a message
before transmission . Call-by-reference passes
pointers to the parameters that are passed from the
client to the server. Call-by-copy /restore uses
temporary storage accessible to both programs



Call-by-value semantic
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Byte ordering
N

Little-endian | 0-7 | 8-15 [ 16-23 (| 24-31

Big-endian | 24-31|16-23| 8-15 | 0-7

Figure 4-11 Data representations



Server management
B

0 Server implementation
O Stateless server
O Stateful server
0 Server management
O Instance per call
O Instance per session

0 Persistent servers



RPC communication
N

1 RPC call semantics

RPC call
semantics
Possibly or Last-one Last-of-many At-least-once Exactly-
maybe call call call call once call

Figure 4-12 RPC call semantics



Orphan calls
N

0 Calls whose caller has expired due to a node crash

01 Handle orphan calls by using:
0 Extermination
O Reincarnation
O Gentle reincarnation

O Expiration



RPC communication protocols
S S
1 Request protocol
0 Request/Reply protocol
0 Request/Reply/ Acknowledge- Reply protocol



Request protocol

Procedure execution

Figure 4-13 The request protocol



Asynchronous RPC
N
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Figure 4-14 Asynchronous RPC



Request/Reply protocol
==
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Figure 4-15 The request/reply protocol



Request/Reply/ Acknowledge- Reply

rotocol
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Figure 4-16 The RRA protocol



Client server binding process
—

Client requests binding
agent for server's address
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Binding agent | Server register with
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Figure 4-17 Client-server binding



Client Server binding
N

01 Issues 0 Types of binding
O Server naming O Fixed binding
O Server locating O Dynamic binding
o Binding agent ® At compile time
orimitives m At link time
. ®m At run time
O Register

O Deregister
O Lookup



Other RPC Issues



Other issues in RPC implementation
B

01 Exception handing and security
0 Failure handling
0 Optimizing RPC execution

0 Various types of complicated RPCs



RPC in heterogeneous environment
-]

0 Data presentation

0 Transport protocol

1 Control protocol



Failure handling mechanism in RPC
N

0 Client cannot find the server

0 Request from client to the server is lost
1 Reply from server to the client is lost

0 Server crashes after getting the request

0 Client crashes after sending the request



RPC Optimization

RPC
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Figure 4-18 Techniques for RPC optimization




Concurrent access to multiple servers
]

0 Use of threads

0 Early reply technique

0 Call buffering approach

0 Serving multiple requests simultaneously
0 Reducing call workload of server

0 Using reply cache for idempotent RPC



Early Reply technique
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Figure 4-19 Early reply technique



Call buffer approach
B
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Figure 4-20 Call-buffer approach for concurrent access to multiple servers



Complicated and special RPCs

!
0 Complicated RPCs

o RPCs with long duration calls or with gaps between
calls

O RPCs with long messages

0 Special RPCs:
o0 Call back RPC
O Broadcast RPC
O Batch mode RPC



Call back RPC

0 Client handle is provided to the server
0 Client process should wait for callback RPC

0 Handle callback deadlocks

Client Server

# Client waits for callback

Start » Callback deadlocks may occur
callback (Par) Pm::“re »
Process P h,
callback and SR21 R13”-1
send reply !

Resume proc exe P
Proc exe ends P2 P3

Figure 4-21 Callback RPC



Case Study: Sun RPC



Case Study- Sun RPC

0 Uses rpcgen compiler which generates
O Header file
O XDR filter file
o Client stub file

o Server stub file



Remote invocation Basics



Remote Object Invocation
—

0 Distributed object concept
O Remote objects reference

0 Remote interface

Remote object
'S ~

Remote

interface mi
m2
m3

Figure 4-22 Remote object and remote interface
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Figure 4-23 Distributed shared object




RMI vs LMI
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Figure 4-24 RMI and LMI




RMI Implementation



RMI implementation

Design issues in RMI

® RMI invocation RMI invocation semantics
semantics O Maybe semantics

B Level of transparency O At-least-once semantics
O Marshalling O At-most-once semantics

O Message passing

o Task of locating and
contacting the remote
object for the client



Invocation semantics
B

Table 4-2 Invocation semantics

Fault tolerance measures

Retransmit Duplicate Re-execute procedure Invocation
requestmassage filtering of retransmit reply semantics
No Not applicable Not applicable May be
Yes No Re-execute procedure At-least-once
Yes Yes Retransmit reply At-most-once
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Figure 4-25 RMI flow diagram



Components of RMI
B

Remote
Skeleton and \ ghject B
dispatcher

for B's class

Object A proxy for B

Remote Communication Communication Remaote Stub
reference module module reference
module module

Figure 4-26 RMI components



RMI execution components
B

0 Communication module

0 Remote reference module
0 RMI software

(1 Server program

01 Client program

1 Binder



RMI execution
_—
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Figure 4-27 RMI implementation



RMI software
—

0 Proxy
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Figure 4-28 Locating remote
objects



Types of objects
N
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Figure 4-29 Types of objects



Remote invocation readiness
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RMI binding

|
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Parameter passing in RMI
N

0 Pass by value

0 Pass by reference



Case study: Java RMI
B

Machine A
Local object O1 Local abject 02
Femote Fi .’
/ reference r.-" g
,/"f 2 . to E1 ,..f" [
LEIEH| f E LT l‘ -.r_.‘_r" :
reference 3 el E T ‘
to L1 Client code with !
FEMI to server at C r'
Machina C 4
[
Ilr
Ny
Remote invocation Copy of 01 ] HIIEEEE
with L1 and R1 /,.T ;,‘
as parameters 1 -
%
refereance \
Server code
with method
implementation

Figure 4-32 Java remote object



Java RMI layer
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Figure 4-33 Java RMI layer
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