CHAPTER - 4
REMOTE COMMUNICATION

I

Topics
N
- Introduction to Remote Communication
- Remote Procedural Call Basics
- RPC Implementation

- RPC Communication

- Other RPC Issues
- Case Study: Sun RPC
- Remote invocation Basics

- RMI Implementation

Intfroduction to Remote
Communication

Introduction
N

0 Middleware

Applications
~
RMI, RPC, and events
Request-reply protocol > Middleware
External data representation
vy

Operating system

Figure 4-1 Role of middleware in remote communication

Remote Procedural Call Basics

Local Procedure Call
S

Stack pointer

Main program’s Main program’s
local variables local variables

Bytes
buf
fd
Return address

Read's local
variable

=« Stack pointer

(a) Before LPC (b) After LPC
Figure 4-2 Local procedure call

Remote Procedure Call
.

0 Basic RPC operation

CallPX, Y, 2) cjignt

Return (P)

Figure 4-3 Basic RPC maodel

RPC operation
N

Wait for result

A A\

Call remote Return from
procedure call

Client

Request

Call local procedure
and return results

Figure 4-4 A typical RPC

Elements of RPC mechanism

implementation
-—

0 Client

0 Client stub
0 RPC Runtime
0 Server stub

0 Server

RPC Execution
S

Client process Server process
Client Server
routines routines
Local procedure t (10) (6) “(5]
Ca" = [1] L ¥
Client Server
stub stub
[[]
System call = (2) (9) (7 (4)
! (8) !
MNetwork [* Network
routines = routines
(3) = network
communication
Local kernel Remote kernel

Figure 4-5 RPC execution

Stub generation
!
0 Manual generation

0 Auto generation using Interface Definition Language
(IDL)

RPC Compilation
—

Client
program
- Client
RPC Client stub executable
Interface
Definition @ Headers
(IDL) Server
Server stub executable
Server
program

Figure 4-6 Steps for RPC compilation

RPC Implementation

RPC implementation
—

0 RPC messages:
o Call / Request
O Reply

@ Request for RPC @

Client Server | RPC
executed
@ Return result

Figure 4-7 RPC messages

RPC Call/ Request message
B

Sent by dient to server
for requesting execution
of remote procedure

Call message, = 0

Y

Remote procedural call .,
fr

Message

identifier

Message
type

identifier

Client

Prog.
Mo

Version
No.

Proc.
MNo.

Arg

L

E

1 \ 7r
Sequence no. of Allow server to identify client
message for lost to send reply message.

and duplicate Allow server to check authenti-

messages cation of client process for
executing procedure

Figure 4-8 RPC call/request message format

RPC reply conditions
—

Table 4-1 RPC reply message conditions

Condition Response from the server

Server receives an unintelligible call Rejects the call.
message, probably because the call
message has violated the RPC protocol.

Server receives the call messages with Return reply unsuccessful, and
unauthorized client ID, i.e. the client does not execute RPC.

is prevented from making the RPC request.

Server does not any receive procedure ID Return reply unsuccessful,
information from the message ID field— and does not execute RPC.

program number, version number, or ID.

If all the above conditions are satisfied, the | Return reply unsuccessful and
server executes the RPC, but may not be does not execute RPC.
able to decode its arguments due to
incompatible RPC interface.

Server executes the RPC but an exception Return reply unsuccessful.
condition occurs.

Server executes the RPC successfully RPC is successful and the server
without any problems. returns the result.

RPC reply message

Error conditions
Message |Message :tggl'; Error 1. Call message not intelligible
identifier | type US _ |condition| (RPC protocol violated)
unsuccessful i .
2. Unauthorized to use service
3. Server finds the remote program,
version, procedure number are
not available with it.
5 77 4. Unable to decode supplied
Message |Message Py arguments
identifier | type status izl
successful g2 5. During execution, an exception
Remote procedure executed condition occurs

successfully

Figure 4-9 RPC reply message format

Parameter Passing Semantics
B

- Call-by-value semantic
— Marshalling

- Call-by —reference semantic

. Call-by-copy /restore semantic

Call-by-value copies all parameters into a message
before transmission . Call-by-reference passes
pointers to the parameters that are passed from the
client to the server. Call-by-copy /restore uses
temporary storage accessible to both programs

Call-by-value semantic

Client machine

Server machine

Client Brocese 1. Client call to Server process
= procedure Implementation
of add
Server stub
— k = add(i,j) Client stub \\\ k = add(i,j)
™ L3 l""‘““" kL] 24
proc:“add 1T 2. Stub builds proc:“add
int: val(i) message int: val(i)
int: val(j) int: wval(j)
proc:™add” [
Client 0OS int: val(i) Server 05
int: 'H"al(j:]

6. Stub makes
local call to "add”

5. Stub unpacks
message

4. Server 0OS
hands message
to server stub

Figure 4-10 Example of call-by-value semantic

3. Message is sent across the network

Byte ordering
N

Little-endian | 0-7 | 8-15 [16-23 (| 24-31

Big-endian | 24-31|16-23| 8-15 | 0-7

Figure 4-11 Data representations

Server management
B

0 Server implementation
O Stateless server
O Stateful server
0 Server management
O Instance per call
O Instance per session

0 Persistent servers

RPC communication
N

1 RPC call semantics

RPC call
semantics
Possibly or Last-one Last-of-many At-least-once Exactly-
maybe call call call call once call

Figure 4-12 RPC call semantics

Orphan calls
N

0 Calls whose caller has expired due to a node crash

01 Handle orphan calls by using:
0 Extermination
O Reincarnation
O Gentle reincarnation

O Expiration

RPC communication protocols
S S
1 Request protocol
0 Request/Reply protocol
0 Request/Reply/ Acknowledge- Reply protocol

Request protocol

Procedure execution

Figure 4-13 The request protocol

Asynchronous RPC
N

Client Wait for result Client Wait for acceptance
Call remote Return from Call remote Return from

procedure call procedure call
Request Reply Request Accept request
Server Time —= Server Time —=
Call local procedure Call local
and return results procedure
(a) (b)

Figure 4-14 Asynchronous RPC

Request/Reply protocol
==

Client Server

First RPC
Procedure execution

Reply message Ack for request message

Procedure execution

Reply message
Figure 4-15 The request/reply protocol

Request/Reply/ Acknowledge- Reply

rotocol
-—

Client Server

Procedure execution

Procedure execution

Reply ack msg

Figure 4-16 The RRA protocol

Client server binding process
—

Client requests binding
agent for server's address

@

Binding agent | Server register with

binding agents
Binding agent returms

server's address to @
di‘Ent @

Client - Server
Client calls
server
Primitives: register, Server given id,
de-register, lookup address and handle

Figure 4-17 Client-server binding

Client Server binding
N

01 Issues 0 Types of binding
O Server naming O Fixed binding
O Server locating O Dynamic binding
o Binding agent ® At compile time
orimitives m At link time
. ®m At run time
O Register

O Deregister
O Lookup

Other RPC Issues

Other issues in RPC implementation
B

01 Exception handing and security
0 Failure handling
0 Optimizing RPC execution

0 Various types of complicated RPCs

RPC in heterogeneous environment
-]

0 Data presentation

0 Transport protocol

1 Control protocol

Failure handling mechanism in RPC
N

0 Client cannot find the server

0 Request from client to the server is lost
1 Reply from server to the client is lost

0 Server crashes after getting the request

0 Client crashes after sending the request

RPC Optimization

RPC
optimization
Concurrent Serving Using reply Selection
: Reduce per
access to multiple cache for of proper
i call workload i ;
multiple requests idempotent timeout
servers simultaneously of server RPCs value
| | |
Use of Early reply Call
threads technique buffering

Figure 4-18 Techniques for RPC optimization

Concurrent access to multiple servers
]

0 Use of threads

0 Early reply technique

0 Call buffering approach

0 Serving multiple requests simultaneously
0 Reducing call workload of server

0 Using reply cache for idempotent RPC

Early Reply technique

Carry out
other activities

Execute proc
tore result

Fj]

Return Result

Figure 4-19 Early reply technique

Call buffer approach
B

. Call buffer
Client cErver Ehe‘:k .ﬁ:ﬂ-
ting request

server

Polling
for waiting
request
Carry out
other act
Execute
procedure
Poling for
result

Continues to wait
for a request

Figure 4-20 Call-buffer approach for concurrent access to multiple servers

Complicated and special RPCs

!
0 Complicated RPCs

o RPCs with long duration calls or with gaps between
calls

O RPCs with long messages

0 Special RPCs:
o0 Call back RPC
O Broadcast RPC
O Batch mode RPC

Call back RPC

0 Client handle is provided to the server
0 Client process should wait for callback RPC

0 Handle callback deadlocks

Client Server

Client waits for callback

Start » Callback deadlocks may occur
callback (Par) Pm::“re »
Process P h,
callback and SR21 R13”-1
send reply !

Resume proc exe P
Proc exe ends P2 P3

Figure 4-21 Callback RPC

Case Study: Sun RPC

Case Study- Sun RPC

0 Uses rpcgen compiler which generates
O Header file
O XDR filter file
o Client stub file

o Server stub file

Remote invocation Basics

Remote Object Invocation
—

0 Distributed object concept
O Remote objects reference

0 Remote interface

Remote object
'S ~

Remote

interface mi
m2
m3

Figure 4-22 Remote object and remote interface

Implementation
of methods

RMI

Distributed shared object

|

Local object

Process

™ Interface

Figure 4-23 Distributed shared object

RMI vs LMI

Remaote

invocation
Dt

Remote
invocation

Figure 4-24 RMI and LMI

RMI Implementation

RMI implementation

Design issues in RMI

® RMI invocation RMI invocation semantics
semantics O Maybe semantics

B Level of transparency O At-least-once semantics
O Marshalling O At-most-once semantics

O Message passing

o Task of locating and
contacting the remote
object for the client

Invocation semantics
B

Table 4-2 Invocation semantics

Fault tolerance measures

Retransmit Duplicate Re-execute procedure Invocation
requestmassage filtering of retransmit reply semantics
No Not applicable Not applicable May be
Yes No Re-execute procedure At-least-once
Yes Yes Retransmit reply At-most-once

Client invoking
method on the

remote object

¢

Stub

:

Remote
reference layer

~.

Level of Transparency

Remote object

:

Skeleton

t

Remote
reference layer

/

TCP/IP

Figure 4-25 RMI flow diagram

Components of RMI
B

Remote
Skeleton and \ ghject B
dispatcher

for B's class

Object A proxy for B

Remote Communication Communication Remaote Stub
reference module module reference
module module

Figure 4-26 RMI components

RMI execution components
B

0 Communication module

0 Remote reference module
0 RMI software

(1 Server program

01 Client program

1 Binder

RMI execution
_—

1. Name

Client | Naming service

Object handle
< 2. Object handle_

- | Location service
3. Select| Address &
address protocols

Register contact
Class address

U
P 5. Make contact | |

] J| - - [[

|y
4. Load and instantiate

class(0S)) -

(Trusted) Distributed shared object

class repository

Figure 4-27 RMI implementation

RMI software
—

0 Proxy

0 Dispatcher

0 Skeleton

Naming

|

Client

Figure 4-28 Locating remote
objects

Types of objects
N

Objects
Based on time Based on time
of binding of existence
Runtime Compile-time Transient Persistent

objecdts objects

Figure 4-29 Types of objects

Remote invocation readiness
]

Se ith th bject
rverwi ‘\reeu JeCts Server machine

K

Object’s stub
(skeleton)

= \F

Object adapter || Object adapter

N\ /

Request

demultiplexer
]

Local OS

Figure 4-30 Object adapter

RMI binding

|
0 Implicit binding
0 Explicit binding

Process A Process B
Client application Marshalled Client application
client proxy
Client | | Proxy (un) Proxy (un) | [Client
proxy [marshaler marshaler [proxy
'|lL *J
K E
5 ¢
'|.| :F
'a.\“ J."

b P Same binding
Binding "'-‘ ‘4-" information
information W K
a
Object server

Figure 4-31 Binding

Parameter passing in RMI
N

0 Pass by value

0 Pass by reference

Case study: Java RMI
B

Machine A
Local object O1 Local abject 02
Femote Fi .’
/ reference r.-" g
,/"f 2 . to E1 ,..f" [
LEIEH| f E LT l‘ -.r_.‘_r" :
reference 3 el E T ‘
to L1 Client code with !
FEMI to server at C r'
Machina C 4
[
Ilr
Ny
Remote invocation Copy of 01] HIIEEEE
with L1 and R1 /,.T ;,‘
as parameters 1 -
%
refereance \
Server code
with method
implementation

Figure 4-32 Java remote object

Java RMI layer

Java virtual
machine

Client
object

TCP

Java virtual
madhine

Remote
object

Figure 4-33 Java RMI layer

Summary
N

- Introduction to Remote Communication
- Remote Procedural Call Basics
- RPC Implementation

- RPC Communication

- Other RPC Issues
- Case Study: Sun RPC
- Remote invocation Basics

- RMI Implementation

