
INTRODUCTION TO

COMPILERS

Prof. S.J. Soni, SPCE - Visnagar

Compiler

Compiler
Source

Program
Target

Program

Errors

Language Processing System

Phases of a compiler

Translation of

Statement

Lexical Analysis

Tokens, Patterns, Lexemes

const pi = 3.1416;

Strings and Languages

Notational Shorthands

Regular Expressions - Examples

RE Pattern RE

The set of strings over (0,1) that have at least

one 1.

0*1(0|1)*

The set of strings over (0,1) that have at most

one 1.

0*|(0*10*)

The set of strings over (0,1) with at least two

consecutive 0’s.

(0|1)*00(0|1)*

The set of strings over (0,1) without two

consecutive 0’s.

(1|01)*(0|epsilon)

The set of strings over (0,1) that not end with 0. (0*1)*

Finite Automata

 A recognizer for a language is a program that takes as input

a string x and answers “yes” if x is a sentence of the

language and “no” otherwise.

 We compile a regular expression into a recognizer by

constructing a generalized transition diagram called a finite

automata.

 A finite automata can be deterministic or nondeterministic ,

where “nondeterministic” means that more than one transition

out of a state may be possible on the same input symbol.

Nondeterministic Finite Automata

Nondeterministic Finite Automata

RE

NFA

Transition

Table

Nondeterministic Finite Automata

Deterministic Finite Automata (DFA)

DFA - Example

Construction of an NFA from a RE

Thompson’s construction rules

Construction of an NFA from a RE

Conversion from NFA to DFA

 The algorithm, called subset construction is used

for conversion from NFA to DFA.

 This algorithm is also useful for simulating an NFA

by a computer program.

 The general idea behind the NFA-to-DFA

construction is that each DFA state corresponds to a

set of NFA states.

Subset Construction - Algorithm

 This algorithm constructs a transition table Dtran for DFA. Each state
of DFA is a set of NFA states, and we construct Dtran so DFA will
simulate "in parallel" all possible moves N can make on a given
input string.

 Note that s is a single state of N, while T is a set of states of N.

Subset Construction - Algorithm

Subset Construction - Example

Subset Construction - Example

Subset Construction - Example

Subset Construction - Example

From a RE to a DFA

From a RE to a DFA

From a RE to a DFA

From a RE to a DFA

From a RE to a DFA

From a RE to a DFA

From a RE to a DFA

DFA to Optimized DFA (Minimizing the

number of states of a DFA)

Partition Algorithm

 The initial partition consists of the two groups

{A, B, C, D} {E } , which are respectively the
nonaccepting states and the accepting states.

 The group {E} cannot be split, because it has only one
state. The other group {A, B, C, D} can be split, so we
must consider the effect of each input symbol.

 On input a, each of these states goes to state B, so
there is no way to distinguish these states using strings
that begin with a. On input b, states A, B, and C go to
members of group {A, B, C ,D}, while state D goes to E,
a member of another group . Thus, group {A, B, C, D} is
split into {A, B, C} {D}, and we get {A, B, C} {D} {E}.

Partition Algorithm

 In the next round, we can split {A, B, C} into {A,C}
{B} , since A and C each go to a member of {A,B,C}
on input b, while B goes to a member of another
group, {D} . Thus, after the second round, {A, C} {B}
{D} {E}.

 For the third round, we cannot split the one
remaining group with more than one state, since A
and C each go to the same state (and therefore to
the same group) on each input. We conclude that
final states= {A, C} { B} {D} {E} .

Partition Algorithm

NFA States DFA State a b

{0,1,2,4,7} A B C A

{1,2,3,4,6,7,8} B B D

{1,2,4,5,6,7} C B C

{1,2,4,5,6,7,9} D B E

{1,2,3,5,6,7,10} E B C A

