INTRODUCTION TO
COMPILERS

I Prof. S.J. Soni, SPCE - Visnagar

Compiler
N

Source
Program

Target
Program

Compiler —>

l

Errors

Language Processing System
N

SOUTCe program

[Preprocessor

modified source program

Compiler

'

target assembly program

Assembler

relocatable machine code

1

: Load library files
Linker/ ® ™ relocatable ob ject files

target machine code

Phases of a compiler

source program

lexical
analyzer

h 4

syntax
analyzer

v

symbol table

manager

semantic
analyzer

:

//
ey

intermediate code
generator

error

handler

\\
e

'

code
optimizer

'

code
generator

,

target program

Fig 1.5 Phases of a compiler

Translation of
Statement

position = initial + rate * 60

lexical analyser

'

id1 =id2 +id3 * 60

syntax analyser

P
id1 - / *

id2 / \

id3 60

intermediate code generation

templ := inttoreal(60)
temp2 :=id3 * templ
temp3 :=id2 + temp2
id1 = temp3

'

code optimization

templ :=id3 * 60.0
id1 =id2 + templ

.

code generation

!

MOVF id3, R2
MULF #60.0, R2
MOVF id2, R1
ADDF R2, R1
MOVE R1,id1

Lexical Analysis

source Lexical
program Analyzer

token

Parser

AN

getNextToken

|

e

Symbol
Table

to semantic
analysis

Figure 3.1: Interactions between the lexical analyzer and the parser

Tokens, Patterns, Lexemes
B

const pi = 3.1416;

TOKEN INFORMAL DESCRIPTION SAMPLE LEXEMES
if characters i, f if
else characters e, 1, s, e else
comparison | <or > or <= or >= or == or != <= 1=
id letter followed by letters and digits | pi, score, D2
number any numeric constant 3.14159, 0, 6.02e23
literal anything but ", surrounded by "’s | "core dumped"

Figure 3.2: Examples of tokens

Strings and Languages

Terms for Parts of Strings
I .

The following string-related terms are commonly used:

1. A prefiz of string s is any string obtained by removing zero or more
symbols from the end of s. For example, ban, banana, and € are
prefixes of banana.

2. A suffiz of string s is any string obtained by removing zero or more

symbols from the beginning of s. For example, nana, banana, and ¢
are suffixes of banana.

3. A substring of s is obtained by deleting any prefix and any suffix
from s For instance, banana, nan, and € are substrings of banana.

4. The proper prefixes, suffixes, and substrings of a string s are those,
prefixes, suffixes, and substrings, respectively, of s that are not € or
not equal to s itself.

3. A subsequence of s is any string formed by deleting zero or more
not necessarily consecutive positions of s. For example, baan is a
subsequence of banana.

Notational Shorthands

BN B 1. One or more instances. The unary, postfix operator ¥ represents the
positive closure of a regular expression and its language. That is, if r is a
regular expression, then (r)* denotes the language (L(r)]++ The operator
* has the same precedence and associativity as the operator * Two useful
algebraic laws, r* = r*le and r* = rr* = r*r relate the Kleene closure
and positive closure.

2. Zero or one instance. The unary postfix operator 7 means “zero or one
occurrence.” That is, r? is equivalent to r|e, or put another way, L(r?) =
L(r) U {€}. The ? operator has the same precedence and associativity as

* and +.

3. Character classes. A regular expression a|az|---|a,, where the a;’s
are each symbols of the alphabet, can be replaced by the shorthand
[@1az - - -ay]. More importantly, when a;,as,...,a, form a logical se-

quence, e.g., consecutive uppercase letters, lowercase letters, or digits, we
can replace them by a;-a,, that is, just the first and last separated by
a hyphen. Thus, [abe] is shorthand for a|b|c, and [a-z] is shorthand for

alb|---|z.

Example 3.4: Let £ = {a, b}.

1. The regular expression a|b denotes the language {a,b}.

2 (alb)(a|b) denotes {aa,ab, ba, bb}, the language of all strings of length two
over the alphabet . Another regular expression for the same language is
aa|ab|ba|bb.

3. a* denotes the language consisting of all strings of zero or more a’s, that
is, {€, a, aa, aaaq,...}.

4. (alb)* denotes the set of all strings consisting of zero or more instances
of a or b, that is, all strings of a’s and b’s: {¢,a,b, aa, ab, ba, bb, aaaq, .. .}.
Another regular expression for the same language is (a*b™)*.

5. ala®b denotes the language {a, b, ab, aab, aaab,. ..}, that is, the string a
and all strings consisting of zero or more a’s and ending in b.

Regular Expressions - Examples
B

Repanem e

The set of strings over (0,1) that have at least 0*1(0| 1)*
one 1.

The set of strings over (0,1) that have at most 0% [(0*10%)
one 1.

The set of strings over (0,1) with at least two (O] 1)*00(0] 1)*
consecutive O’s.

The set of strings over (0,1) without two (1]101)*(0| epsilon)
consecutive O’s.

The set of strings over (0,1) that not end with 0. (0*1)*

Finite Automata
N

0 A recognizer for a language is a program that takes as input
a string x and answers “yes” if x is a sentence of the
language and “no” otherwise.

0 We compile a regular expression into a recognizer by
constructing a generalized transition diagram called a finite

auvtomata.

0 A finite automata can be deterministic or nondeterministic ,
where “nondeterministic” means that more than one transition
out of a state may be possible on the same input symbol.

Nondeterministic Finite Automata
B

A nondeterministic finite automaton (NFA) consists of:

1. A finite set of states S.

2. A set of input symbols ¥, the input alphabet. We assume that €, which
stands for the empty string, is never a member of ¥.

3. A transition function that gives, for each state, and for each symbol in
¥ U {€} a set of nezt states.

4. A state sp from S that is distinguished as the start state (or initial state).

d. A set of states F, a subset of S, that is distinguished as the accepting
states (or final states).

Nondeterministic Finite Automata

_]
RE (a|b)*abb
NFA sart 1 SR W 2 ¢ W @
b
Transition STATE | @ b €
Table 0 ({o1} {op 0
1 0 {2y 0
9 0 {3} @
3 0 0]

Nondeterministic Finite Automata
—

aa*|bb”

Deterministic Finite Automata (DFA)
N

A deterministic finite automaton (DFA) is a special case of an NFA where:

1. There are no moves on input €, and

2. For each state s and input symbol a, there is exactly one edge out of s
labeled a.

DFA - Example

(alb)*abb

Construction of an NFA from a RE
—

Thompson's construction rules
The McNaughton-Yamada-Thompson algorithm

BASIS: For expression € construct the NFA
start

—i — 1@"

—-'-F-

For any subexpression a in ¥, construct the NFA

=D

Construction of an NFA from a RE

Conversion from NFA to DFA

0 The algorithm, called subset construction is used

for conversion from NFA to DFA.

0 This algorithm is also useful for simulating an NFA
by a computer program.

11 The general idea behind the NFA-to-DFA

construction is that each DFA state corresponds to a
set of NFA states.

Subset Construction - Algorithm
N

0 This algorithm constructs a transition table Dtran for DFA. Each state
of DFA is a set of NFA states, and we construct Dtran so DFA will
simulate "in parallel” all possible moves N can make on a given

input string.

0 Note that s is a single state of N, while T is a set of states of N.

OPERATION

DESCRIPTION

e-closure] s)

Set of NFA states reachable from NFA state s

on e-transitions alone.

e-closure(T)

Set of NFA states reachable from some NFA state s

in set T on e-transitions aloneg = U, iy 7 e-closure(s).

move(T, a)

Set of NFA states to which there is a transition on

input symbol a from some state s in T

Operations on NFA states

Subset Construction - Algorithm
N

initially, e-closure(so) & the only state in Dstates, and it & unmarked:
while (there is an unmarked state T in Dstates) {

mark T
for (each input symbol a) { .
U = e-closure(move(T, a)); The subset construction

if (U ig not in Dstates)
add U as an unmarked state to Dstates,
Diran[T,a] = U;

push all states of T onto stack;

initialize e-closureT) to T

while (stack iz not empty) {

pop t, the top element, off stack;
i for (each state u with an edge from ¢ to u labeled €)
Computing e- dﬂﬂ'ﬂfﬂ:ﬂ if (uis not in eclosure(T)) {

add u to e-closureT);
push u onto stack;

Subset Construction - Example
—

@bravh 5 ot
b

Subset Construction - Example
N

The start state A of the equivalent DFA is e-closure(0), or A ={0,1,2,4,7},

The input alphabet is {a, b}.

first step is to mark A and compute

Dtran[A, a] = e-closure(move(A, a))

Among the states 0, 1, 2, 4, and 7, only 2 and 7 have transitions on a, to
3 and 8 respectively.

Thus, move(A,a) = {3,8}.

e-closure({3,8})= 11,2,3,4,6,7,8}
Dtran[A, a] = e-closure(move(A, a)) = e-closure({3, 8}) = {1,2,3,4,6,7,8}

Subset Construction - Example

JEEE N
Let us call this set B, so Dtran|A,a] = B.
Now, we must compute Diran[A, b).

Dtran[A,b] = e-closure({5}) = {1,2,4,5,6, 7}
Let us call the above set C, so Dtran[A,b] = C.

NFA STATE DFA STATE a | b

{0,1,2,4,7} A B |C

{11213:416:718} B B D

{1,2,4,5,6,7} C B|C

{1,2,4,5,6,7,9} D B | E

{1,2,3,5,6,7,10} E B|C
D

Transition table Diran tor DFA

Subset Construction - Example

Result of applying the subset construction

From a RE to a DFA

The constructed NFA has only one accepting state, but this state, having
no out-transitions, is not an important state. By concatenating a unique right
endmarker # to a regular expression r, we give the accepting state for r a
transition on #, making it an important state of the NFA for (r)#t. In other
words, by using the augmented regular expression (r)#, we can forget about
accepting states as the subset construction proceeds; when the construction is
complete, any state with a transition on # must be an accepting state.

The important states of the NFA correspond directly to the positions in
the regular expression that hold symbols of the alphabet. It is useful, as we
shall see, to present the regular expression by its syntaz tree, where the leaves
correspond to operands and the interior nodes correspond to operators. An
interior node is called a cat-node, or-node, or star-node if it is labeled by the
concatenation operator (dot), union operator |, or star operator # respectively.

From a RE to a DFA

- J
0/0\#
c./ \b 6
0/ \b 5
SN,
i 3

u/l\b

Syntax tree for (a/b)*abb#

From a RE to a DFA

S e
{1.23} o {6}

T~

{1.23} 5 {5} {6} #{6)

/\

{1.2,3} 5 {4} {5} b{5)

T~

{123} o {3} {4} b {4}

T~

{1,2} *{1.2} {3} a {3}

|

{12} 1 {12}

N

{1} a {1} {2} b {2}

firstpos and lastpos for nodes in the syntax tree for (a/b)*abb#

From a RE to a DFA
B

Finally, we need to see how to compute followpos. There are only two ways
that a position of a regular expression can be made to follow another.

1. If n is a cat-node with left child ¢; and right child ¢, then for every
position i in lastpos(c;), all positions in firstpos(cz) are in followpos(i).

2. If n is a star-node, and i is a position in lastpos(n), then all positions in
firstpos(n) are in followpos(i).

NODE n | followpos(n)
{1,2,3}
{1,2,3}
{4}
{5}
{6}
]

S W o L2 B =

The function followpos

From a RE to a DFA

NODE n | followpos(n)
1 {1,2,3}
2 {1,2,3)
3 {4}
4 {5}
5 {6}
6 0

< &) (4 9 (6

Directed graph for the function followpos

From a RE to a DFA

The value of firstpos for the root of the tree is {1,2,3}, so this set is the
start state of D.

Call this set of states A. We must compute Diran[A,a] and Dtran[A, b].

Among the positions of A, 1 and 3 correspond to a, while 2 corresponds to b.

Thus, Dtran[A, a] = followpos(1) U followpos(3) = {1,2, 3,4},
and Dtran[A,b] = followpos(2) = {1,2, 3}.

B = {1, 2, 3,4}, is new, add it to Dstates and proceed to compute its transitions.

From a RE to a DFA

DFA constructed

DFA to Optimized DFA (Minimizing the

number of states of a DFAi
.

(a/b)*abb

NFA STATE DFA STATE a | b
{0,1,2,4,7} A B|C
{1,2,3,4,6,7,8} B B | D
{1,2,4,5,6,7} C B|C
{1,2,4,5,6,7,9} D B | E
{1,2,3,5,6,7,10} E B|C

NFA STATE DFA STATE a | b

P °L® AI o h {0,1,2,4,7} A B|C
arfition gOI"I'I' m {1,2,3,4,6,7,8) B B|D
{1,2,4,5,6,7} C B|C

{1,2,4,5,6,7,9} D B | E

e, _{1.2.3:5,6,7,10) 2 bl

0 The initial partition consists of the two groups

{A, B, C, D} {E } , which are respectively the
nonaccepting states and the accepting states.

0 The group {E} cannot be split, because it has only one
state. The other group {A, B, C, D} can be split, so we
must consider the effect of each input symbol.

0 On input a, each of these states goes to state B, so
there is no way to distinguish these states using strings
that begin with a. On input b, states A, B, and C go to
members of group {A, B, C ,D}, while state D goes to E,
a member of another group . Thus, group {A, B, C, D} is

split into {A, B, C} {D}, and we get {A, B, C} {D} {E}.

NFA STATE DFA STATE a | b

P °L® AI o h {0,1,2,4,7} A B|C
arfition gOI"I'I' m {1,2,3,4,6,7,8) B B|D
{1,2,4,5,6,7} C B|C

{1,2,4,5,6,7,9} D B | E

e, _{1.2.3:5,6,7,10) 2 bl

0 In the next round, we can split {A, B, C} into {A,C}
{B}, since A and C each go to a member of {A,B,C}
on input b, while B goes to a member of another
group, {D} . Thus, after the second round, {A, C} {B}
{D} {E}.

0 For the third round, we cannot split the one
remaining group with more than one state, since A
and C each go to the same state (and therefore to

the same group) on each input. We conclude that
final states= {A, C} { B} {D} {E} .

Partition Algorithm

NFA STATE DFA STATE | a | b
{0,1,2,4,7} A B|C
{1,2,3,4,6,7,8} B B | D
{1,2,4,5,6,7} C B|C
{1,2,4,5,6,7,9} D B | FE
{1,2,3,5,6,7,10} E B|C

NFA States DFA State N T

{0,1,2,4,7}
{1,2,3,4,6,7,8}
{1,2,4,5,6,7,9}
{1,2,3,5,6,7,10}

B
C
D
E

® W W W™ w

O MmO OO

A

