
MACRO AND MACRO

PROCESSORS

Prof. S.J. Soni, SPCE – Visnagar.

Introduction

 Macro are used to provide a program generation

facility through macro expansion.

 Many programming language provide built in

facilities for writing macros. E.g. Ada,C and C++.

 Higher version of processor family also provide such

facility.

Cont.

 “A macro is a unit of specification for program

generation through expansion.

 Macro consist of name, a set of formal parameters

and a body of code.

 “The use of macro name with a set of actual

parameters is replaced by some code generated

from its body, this is called macro expansion.”

Cont.

 Two kind of expansion

 Lexical expansion:

 Lexical expansion implies replacement of character string by
another character string during program generation.

 Lexical expansion is typically employed to replace
occurrences of formal parameter by corresponding actual
parameters.

 Semantic Expansion:

 Semantic expansion implies generation of instructions
tailored to the requirements of a specific usage

 Example: generation of type specific instruction for
manipulation of byte and word operands.

 Example: the following sequence of instruction is used to

increment the value in a memory word by a constant:

 Move the value from the memory word into a machine

register.

 Increment the value in the machine register.

 Move the new value into the memory word.

 Using lexical expansion the macro call INCR A,B,AREG

can lead to the generation of a MOVE-ADD-MOVE

instruction sequence to increment A by the value B using

AREG.

Example

 Macro

 INCR &MEM_VAL, &INCR_VAL, ®

 MOVER ®, &MEM_VAL

 ADD ®,&INCR_VAL

 MOVEM ®, &MEM_VAL

 MEND

Macro definition and call

 Macro definition:

 A macro definition is enclosed between a macro header

statement and macro end statement.

Macro definition are typically located at the start of

program .

Macro definition consist of

 A macro prototype statement

One or more model statement

Macro preprocessor statement

Cont.

 A macro prototype statement

 The macro prototype statement declares the name of a macro
and the names and kinds of its parameters.

 <macro name> [<formal parameter spec>, …]

 Where name appears in the mnemonic field of assembly
statement and <formal parameter spec> is of the form
&<parameter name>[<parameter kind>]

 Model statement

 A model statement is a statement from which an assembly
language statement may be generated during macro expansion.

 Macro preprocessor statement

 A preprocessor statement is used to perform auxiliary functions
during macro expansion.

Macro call

 A macro is called by writing the macro name in the

mnemonic field of an assembly statement.

 <macro name> [<actual parameter spec>,…]

 Where an actual parameter typically an operand

specification in an assembly language statement.

Macro Expansion

 A macro call leads to macro expansion, during

macro expansion, the macro call statement is

replaced by a sequence of assembly statements.

 „+‟ is used to differentiate between the original

statement of program and macro statement.

Macro Expansion

 Two key notions concerning macro expansion are:

 Expansion time control flow:

 This determines the order in which model statements are

visited during macro expansion.

 Lexical substitution:

 Lexical substitution is used to generate an assembly

statement from a model statement.

Flow of control during expansion

 Flow of control during expansion

 The default flow of control during macro expansion is
sequential. its start with statement following the macro
prototype statement and ending with the statement
preceding the MEND statement.

 A preprocessor statement can alter the flow of control
during expansion such that some model statements are
never visited during expansion is called conditional
expansion.

 Same statement are repeatedly visited during
expansion is called loops expansion.

Algorithm – Micro Expansion

 Macro expansion is implemented using a macro
expansion counter (MEC).

 Algorithm: (Outline of macro expansion)

 MEC=statement number of first statement following
the prototype statement;

 While statement pointed by MEC is not a MEND
statement
 (a) if a model statement then

 (i) Expand the statement

 (ii) MEC=MEC+1;

 (b) Else (i.e. a preprocessor statement)
 (i) MEC= new value specified in the statement;

 Exit from macro expansion.

Lexical Substitution

 Lexical Substitution:

 Model statement consists of 3 type of strings
 An ordinary string, which stands for itself.

 The name of a formal parameter which is preceded by the
character „&‟.

 The name of preprocessor variable, which is also preceded by the
character „&‟.

 During lexical expansion, string of type 1 are retained
without substitution.

 String type 2 and 3 are replaced by the corresponding
actual parameter values.

 The value of formal parameter depends on the kind of
parameter.

Types of Parameters

 Positional parameters

 Keyword parameters

 Default specification of parameter

 Macro with mixed parameter lists

 Other uses of parameters

Positional parameters

 Positional parameters

 A positional formal parameter is written as

&<parameter name>. The <actual parameter spec> in

call on a macro using positional parameters is simply an

<ordinary string>.

 Step-1 find the ordinal position of XYZ in the list of

formal parameters in the macro prototype statement.

 Step-2 find the actual parameter specification

occupying the same ordinal position in the list of actual

parameters in macro call statement.

Positional parameters – Example

 INCR A, B, AREG

 The rule of positional association values of the formal
parameters are:

 Formal parameter value

MEM_VAL A

INCR_VAL B

REG AREG

Lexical expansion of model statement now leads to the code

+ MOVER AREG, A

+ ADD AREG, B

+ MOVEM AREG, A

Keyword parameters

 Keyword parameters

 <parameter name > is an ordinary string and

<parameter kind> is the string „=„ in syntax rule.

 The <actual parameter spec> is written as <formal

parameter name>=<ordinary string>.

 The keyword association rules:

 Step-1 find the actual parameter specification which has the

form XYZ=<ordinary string>

 Step-2 Let <ordinary string> in the specification be the

string ABC. Then the value of formal parameter XYZ is ABC.

Keyword parameters

 Example :

Default specification of parameters

 Default specification of parameters

 A default is a standard assumption in the absence of an

explicit specification by programmer.

 Default specification of parameters is useful in

situations where a parameter has the same value in

most calls.

When desired value is different from the default value,

the desired value can be specified explicitly in a macro

call.

Default specification of parameters

 Example:

Call the macro

INCR_D MEM_VAL=A, INCR_VAL=B

INCR_D INCR_VAL=B, MEM_VAL=A

INCR_D INCR_VAL=B, MEM_VAL=A, REG=BREG

MARCO DIFINITION

MACRO

INCR_D &MEM_VAL=,&INCR_VAL=,®=AREG

MOVER ®, &MEM_VAL

ADD ®, &INC_VAL

MOVEM ®, &MEM_VAL

MEND

Macro with mixed parameter lists

 Macro with mixed parameter lists

 A macro may be defined to use both positional and

keyword parameters.

 All positional parameters must precede all keyword

parameters.

 Example: SUMUP A,B,G=20,H=X

Where A,B are positional parameters while G,H are

keyword parameters.

Other uses of parameters

 Other uses of parameters

 The model statements have used formal parameters

only in operand fields.

 Formal parameter can also appear in the label and

opcode fields of model statements.

Other uses of parameters-Example

Nested Macro Call

 A model statement in macro may constitute a call on

another macro, such calls are known as nested

macro calls.

 The macro containing the nested call is called outer

macro.

 The called macro called inner macro.

 Expansion of nested macro calls follows the last-in-

first-out(LIFO) rule.

Nested Macro

Call - Example

Advanced Macro Facilities

 Advance macro facilities are aimed at supporting

semantic expansion.

 Facilities for alteration of flow of control during

expansion.

 Expansion time variables

 Attributes of parameters.

Alteration of flow of control during

expansion

 Alteration of flow of control during expansion:

 Expansion time sequencing symbols (SS).

 Expansion time statements AIF, AGO and ANOP.

Sequencing symbol has syntax

.<ordinary string>

A SS is defined by putting it in the label field of

statement in the macro body.

It is used as operand in an AIF, AGO statement for

expansion control transfer.

Cont.

 An AIF statement has syntax

AIF (<expression>) <sequencing symbol>

 Where, <expression> is relational expression

involving ordinary strings, formal parameters and

their attributes, and expansion time variables.

 If the relational expression evaluates to true,

expansion time control is transferred to the

statement containing <sequencing symbol> in its

label field.

Cont.

 An AGO statement the syntax

AGO <sequencing symbol>

 Unconditionally transfer expansion time control to
the statement containing <sequencing symbol> in its
label field.

 An ANOP statement is written as

<sequencing symbol> ANOP

 Simply has the effect of defining the sequencing
symbol.

Expansion Time Variable (EV‟s)

 Expansion Time Variable

 Expansion time variable are variables which can only be
used during the expansion of macro calls.

 Local EV is created for use only during a particular macro
call.

 Global EV exists across all macro calls situated in program
and can be used in any macro which has a declaration for
it.

LCL <EV specification>[,<EV specification>…]

GBL <EV specification>[,<EV specification>…]

Cont.

 <EV specification>has syntax &<EV name>, where

EV name is ordinary string.

 Initialize EV by preprocessor statement SET.

<EV Specification> SET <SET-expression>

EV‟s Example

Attributes of formal parameters

 Attributes of formal parameters:

<attribute name>‟ <formal parameter spec>

Represents information about the value of the formal

parameter about corresponding actual parameter.

The type, length and size attributes have the name T,L

and S.

Example

Cont.

 Conditional expansion:

 Conditional expansion helps in generating assembly

code specifically suited to the parameters in macro call.

 A model statement is visited only under specific

conditions during the expansion of a macro.

 AIF and AGO statement used for this purpose.

Cont.

 Example: evaluate A-B+C in AREG.

MACRO

EVAL &X, &Y, &Z

AIF (&Y EQ &X) .ONLY

MOVER AREG, &X

SUB AREG, &Y

ADD AREG, &Z

AGO .OVER

.ONLY MOVER AREG, &Z

.OVER MEND

Cont.

 Expansion time loop

 To generate many similar statements during the expansion of a
macro.

 This can be achieved by similar model statements in the macro.

 Example:

MACRO

CLEAR &A

MOVER AREG, =„0‟

MOVEM AREG, &A

MOVEM AREG, &A+1

MOVEM AREG, &A+2

MEND

Cont.

 Expansion time loops can be written using expansion time variables
and expansion time control transfer statement AIF and AGO.

Example:

MACRO

CLEAR &X, &N

LCL &M

&M SET 0

MOVER AREG,=„0‟

.MOVE MOVEM AREG, &X+&M

&M SET &M+1

AIF (&M NE N) .MORE

MEND

Cont.

 Comparison with execution time loops:

Most expansion time loops can be replaced by

execution time loops.

 An execution time loop leads to more compact

assembly programs.

 In execution time loop programs would execute slower

than programs containing expansion time loops.

Cont.

 Other facilities for expansion time loops:

 REPT statement

 Syntax: REPT <expression>

 <expression> should evaluate to a numerical value during

macro expansion.

 The statements between REPT and an ENDM statement

would be processed for expansion <expression> number of

times.

Cont.

 Example

MACRO

CONST10

LCL &M

&M SET 1

REPT 10

DC „&M‟

&M SETA &M+1

ENDM

MEND

Cont.

 IRP statement

IRP <formal parameter>, <argument-list>

 Formal parameter mentioned in the statement takes

successive values from the argument list.

 The statements between the IRP and ENDM

statements are expanded once.

Cont.

 Example:

MACRO

CONSTS &M, &N, &Z

IRP &Z, &M=7, &N

DC „&Z‟

ENDM

MEND

A MACRO call CONSTS 4, 10 leads to declaration of
3 constants with the values 4,7 and 10.

Cont.

 Semantic Expansion:

 Semantic expansion is the generation of instructions tailored
to the requirements of a specific usage.

Example:

MACRO

CREATE_CONST &X, &Y

AIF (T‟&X EQ B) .BYTE

&Y DW 25

AGO .OVER

.BYTE ANOP

&Y DB 25

.OVER MEND

DESIGN OF A MACRO PREPROCESSOR

 The macro preprocessor accepts an assembly

program containing definitions and calls and

translates it into an assembly program which does

not contain any macro definition or call.

Macro

preprocessor
Assembler

Program with

macro definitions

and calls
Program without

macros

Target program

Cont.

 Design overview

 Listing all tasks involved in macro expansion

 Identify macro calls in the program.

 Determine the values of formal parameters.

Maintain the values of expansion time variables declared in

a macro.

Organize expansion time control flow.

 Determine the values of sequencing symbols.

 Perform expansion of a model statement.

Cont.

 The following 4 step procedure is followed to arrive

at a design specification for each task:

 Identify the information necessary to perform a task.

 Design a suitable data structure to record the

information.

 Determine the processing necessary to obtain the

information.

 Determine the processing necessary to perform the task.

Cont.

 Identify macro calls:

 A table called the macro name table (MNT) is designed to hold the
name of all macro defined in program.

 Determine values of formal parameters

 A table called actual parameter table (APT) is designed to hold the
values of formal parameters during the expansion of a macro call.

 It contains (<formal parameter name>,<value>)

 A table called parameter default table(PDT) is used for each macro.

 Accessible from the MNT entry of macro.

 It contain pairs of the form (<formal parameter name>,<default
value>).

 If macro call statement does not specify a value for some parameter
then its default value would be copied from PDT to APT.

Cont.

 Maintain expansion time variables:

 An expansion time variables table (EVT) is maintained

for this purpose.

 Table contain pairs of the form

 (<EV name>,<value>)

 It accessed when a preprocessor statement or model

statement under expansion refers to an EV.

Cont.

 Organize expansion time control flow

 The body of macro contained set of model statements

and preprocessor statement in it, is stored in a table

called the macro definition table (MDT) for use during

macro expansion.

 The flow of control during macro expansion determines

when a model statement is to be visited for expansion.

Cont.

 Determine values of sequencing symbols:

 A sequencing symbol table (SST) is maintained to hold

this information

 Table contains pairs of the form

 (<sequencing symbol name>,<MDT entry#>)

Where <MDT entry#> is the number of the MDT entry

which contains the model statement defining the

sequencing symbol.

Cont.

 Perform expansion of a model statement

 Task are as follow

MEC points to the MDT entry containing the model
statement.

 Values of formal parameters and EV‟s are available in APT
and EVT, respectively

 The model statement defining a sequencing symbol can be
identified from SST.

 Expansion of a model statement is achieved by
performing a lexical substitution for the parameters
and EV‟s used in the model statement.

Data structures

 To obtain a detailed design of the data structure it

is necessary to apply the practical criteria of

processing efficiency and memory requirements.

 The table APT,PDT and EVT contain pairs which are

searched using the first component of the pairs as a

key- the formal parameter name is used as the key

to obtain its value from APT.

Cont.

 This search can be eliminated if the position of an entity
within a table is known when its value is accessed.

 The value of formal parameter ABC is needed while
expanding a model statement using it

MOVER AREG, &ABC

 Let the pair (ABC,5) occupy entry #5 in APT. the search
in APT can be avoided if the model statement appears
as

MOVER AREG, (P,5)

 In the MDT, where (P,5) stand for the word „parameter
#5‟.

Cont.

 The first component of the pairs stored in APT is no
longer used during macro expansion e.g. the
information (P,5) appearing in model statement is
sufficient to access the value of formal parameter ABC.

 APT containing (<formal parameter name>,<value>)
pairs is replaced by another table called APTAB which
only contains <value>‟s.

 Ordinal number are assigned to all parameters of
macro, a table named parameter name table (PNTAB) is
used for this purpose.

 Parameter name are entered in PNTAB in same order in
which they appear in the prototype statement.

Cont.

 The information (<formal parameter

name>,<value>) in APT has been split into two

tables

PNTAB- which contains formal parameter names

APTAB- which contains formal parameter values

PNTAB is used while processing a macro definition

while APTAB is used during macro expansion.

Cont.

 Similar analysis leads to splitting of EVT into

EVNTAB and EVTAB and SST into SSNTAB and

SSTAB.

 EV name are entered in EVNTAB while processing

EV declarations.

 SS name are entered in SSNTAB while processing

an SS reference or definition, whichever occur

earlier.

Cont.

 The positional parameter of macro appear before
keyword parameters in the prototype statement.

 If macro have p positional parameter and k keyword
parameters, then keyword parameters have the ordinal
number p+1, p+2 …P+k

 Due to this numbering redundancies appear in PDT.

 Entry only needs to exist for parameter number p+1,
P+2 …P+k.

 So, replace parameter default table(PDT) by a
keyword parameter default table (KPDTAB), this table
have only k entries.

Cont.

 MNT has entries for all macros defined in a

program, each entry contains three pointers

MDTP,KPDTP and SSTP which are pointers to

MDT,KPDTAB and SSNTAB for the macro

respectively.

Cont.

 Macro preprocessor data structure can be summarized
as follows:

 PNTAB and KPDTAB are constructed by processing the
prototype statement.

 Entries are added to EVNTAB and SSNTAB as EV
declarations and SS definitions/references are encountered.

 MDT entries are constructed while processing model
statements and preprocessor statements in macro body.

 SSTAB entries, when the definition of sequencing symbol in
encountered.

 APTAB is constructed while processing a macro.

 EVTAB is constructed at the start of expansion of macro.

Tables of the macro preprocessor
Table Fields in each entry

Macro name Table(MNT) Macro name,

Number of positional parameter(#PP),

Number of keyword parameter(#KP),

Number of expansion time variables(#EV),

MDT pointer (MDTP).

KPDTAB pointer (KPDTP).

SSTAB pointer (SSTP)

Parameter Name Table(PNTAB) Parameter name

EV Name Table (EVNTAB) EV name

SS Name Table (SSNTAB) SS name

Keyword Parameter Default

Table(KPDTAB)

Parameter name, default value

Macro Definition Table(MDT) Label, Opcode, Operands

Actual Parameter Table(APTAB) Value

EV Table (EVTAB) Value

SS Table (SSTAB) MDT entry #

Cont.

MACRO

CLEARMEM &X, &N, ®=AREG

LCL &M

&M SET 0

MOVEM ®, =„0‟

.MORE MOVEM ®, &X+&M

&M SET &M+1

AIF (&M NE N) .MORE

MEND

PNTAB EVNTAB

SSNTAB

X

N

REG

M

MORE

MNT CLEARMEM 2 1 1 25 10 5

#PP #KP #EV MDTP KPDTP SSTP

KPDTAB 10 REG AREG SSTAB 5 28

MDT LCL (E,1)25

(E,1) SET 026

MOVER (P,3)=„0‟27

MOVEM (P,3),(P,1)+(E,1)28

(E,1) SET (E,1)+129

AIF ((E,1) NE (P,2)) (S,1)30

MEND31

Processing of Macro definitions

 KPDTAB_pointer = 1

 SSTAB_ptr = 1;

 MDT_ptr = 1;

 Algorithm :(Processing of a macro definition)

1. SSNTAB_ptr=1;

PNTAB_ptr=1;

2. Process the macro prototype statement and form the MNT entry

(a) name= macro name

(b) for each positional parameter

(i) Enter parameter name in PNTAB[PNTAB_ptr]

(ii) PNTAB_ptr= PNTAB_ptr+1;

(iii) #PP=#PP+1;

Cont.

(c) KPDTP=KPDTAB_ptr;

(d) for each keyword parameter

(i) Enter parameter name and default value (if any) , in
KPDTAB[KPDTAB_ptr].

(ii) Enter parameter name in PNTAB[PNTAB_ptr].

(iii) KPDTAB_ptr=KPDTAB_ptr+1;

(iv) PNTAB_ptr=PNTAB_ptr+1;

(v) #KP=#KP+1;

(e) MDTP=MDT_ptr;

(f) #EV=0;

(g) SSTP=SSTAB_ptr;

Cont.

3. While not a MEND statement

(a) if an LCL statement then

(i) Enter expansion time variable name in EVNTAB.

(ii) #EV=#EV+1;

(b) if a model statement then

(i) if label field contains a sequencing symbol then

if symbol is present in SSNTAB then

q= entry number in SSNTAB;

else

Enter symbol in SSNTAB[SSNTAB_ptr];

q= SSNTAB_ptr;

SSNTAB_ptr=SSNTAB_ptr+1;

SSTAB[SSTP+q-1]=MDT_ptr;

(ii) For a parameter, generate the specification (P,#n)

(iii) For an expansion variable, generate the specification (E,#m);

(iv) Record the IC in MDT[MDT_ptr];

(v) MDT_ptr=MDT_ptr+1;

(c) If Preprocessor statement then

(i) if a SET statement

search each expansion time variable
name used in the statement in EVNTAB

and generate the spec (E,#m).

(ii) if an AIF or AGO statement then

if sequencing symbol used in the
statement is present in SSNTAB then

q=entry number in SSNTAB;

else

enter symbol in SSNTAB[SSNTAB_ptr]

q=SSNTAB_ptr;

SSNTAB_ptr=SSNTAB_ptr+1

replace the symbol by (S, SSTP+q-1)

Cont.

(iii) Record the IC in MDT[MDT_ptr]

(iV) MDT_ptr=MDT_ptr+1

4. (MEND statement)

if SSNTAB_ptr =1 (SSNTAB is empty) then

SSTP=0

else

SSTAB_ptr=SSTAB_ptr+SSNTAB_ptr-1

if #KP=0 then KPDTP=0;

Macro expansion

 We use the following data structure to perform
macro expansion:

 APTAB – Actual parameter table

 EVTAB – EV table

MEC – Macro expansion counter

 APTAB_ptr – APTAB pointer

 EVTAB_ptr – EVTAB pointer

 Number of entries in APTAB equals to the sum of
values in the #PP and #KP fields of the MNT entry
of macro.

Cont.

 Algorithm 5.3 (Macro Expansion)

1. Perform initialization for the expansion of a macro

a) MEC= MDTP field of MNT entry;

b) Create EVTAB with #EV entries and set EVTAB_ptr.

c) Create APTAB with #PP+#KP entries and set APTAB_ptr.

d) Copy keyword parameter defaults from the entries

KPDTAB[KPDTP] to KPDTAB[KPDTP+#KP-1] into

APTAB[#PP+1] to APTAB[#PP+#KP].

e) Process positional parameters in the actual parameter list

and copy them into APTAB[1] to APTAB[#PP].

Cont.

f) For keyword parameters in the actual parameter list

search the keyword name in parameter name field of
KPDTAB[KPDTP] to KPDTAB[KPDTP+#KP-1]. Let KPDTAB[q]
contain a matching entry. Enter value of keyword parameter in
the call (if any) in APTAB[#PP+q-KPDTP+1].

2) While statement pointed by MEC is not MEND statement

a) if a model statement then

(i) Replace operands of the form (P,#n) and
(E,#m) by values in APTAB[n] and

EVTAB[m] respectively.

(ii) Output the generated statement.

(iii) MEC=MEC+1;

Cont.

(b) If a SET statement with the specification (E,#m) in the label
field then

(i) Evaluate the expression in the operand field
and set an appropriate value in EVTAB[m].

(ii) MEC=MEC+1;

(c) If an AGO statement with (S,#s) in operand field then

MEC=SSTAB[SSTP+s-1];

(d) If an AIF statement with (S,#s) is operand field then

if condition in AIF statement is true then

MEC=SSTAB[SSTP+s-1];

(3) Exit from macro expansion.

Nested macro calls



COMPUTE X, Y

+ MOVEM BREG, TMP [1]

+INCR_D X, Y

+MOVER BREG, TMP [5]

+ MOVER BREG, X [2]

+ ADD BREG, Y [3]

+ MOVEM BREG, X [4]

Cont.

 Two basic alternatives exist for processing nested

macro calls.

 In this code macro calls appearing in the source

program have been expanded but statements resulting

from the expansion may themselves contain macro calls.

 This first level expanded code to expand these macro

calls, until we obtain a code form which dose not

contain any macro calls.

 This scheme would require a number of passes of

macro expansion, which makes it quite expensive.

Cont.

 Efficient alternative would be to examine each

statement generated during macro expansion to see

if it is itself macro call.

 A provision can be made to expand this call before

continuing with the parent macro call.

 This avoid multiple passes of macro expansion.

Cont.

 Two provisions are required to implement the

expansion of nested macro calls:

 Each macro under expansion must have its own set of

data structures, (MEC,APTAB,EVTAB,APTAB_ptr and

EVTAB_ptr).

 An expansion nesting counter(Nest_cntr) is maintained

to count the number of nested macro calls. Nest_cntr is

incremented when a macro call is recognized and

decremented when MEND statement is encountered.

Cont.

 Creating many copies of the expansion time data

structure, this arrangement provides access

efficiency but it is expensive in terms of memory

requirements.

 Difficult in design decision- how many copies of the

data structures should be created?

 If too many copies are created then some may

never be used.

 If too few are created, some assembly programs

may have to be rejected.

Cont.

 Macro calls are expanded in LIFO manner, the stack

consists of expansion records, each expansion record

accommodating one set of expansion time data

structures.

 Expansion record at the top of stack corresponds the

macro call currently being expanded.

 When a nested macro call is recognized, a new

expansion record is pushed on the stack to hold the

data structures for the call.

 At MEND an expansion record is popped off the stack.

Cont.

 Record base (RB) is a pointer pointing to the start of

this expansion record.

 TOS point to the last occupied entry in stack.

 When nested macro call is detected, another set of

data structure is allocated on the stack.

Cont.

Previous

expansion record

RB->

1(RB)

2(RB)

3(RB)

TOS->

Reserved pointer

MEC

EVTAB_ptr

APTAB

EVTAB

Cont.

Data structure Address

Reserved pointer 0(RB)

MEC 1(RB)

EVTAB_ptr 2(RB)

APTAB 3(RB) to eAPTAB+2(RB)

EVTAB Contents of EVTAB_ptr

Cont.

 The start of expansion

No. Statement

1. TOS=TOS+1;

2. TOS* = RB;

3. RB=TOS;

4. 1(RB)=MDTP entry of MNT;

5. 2(RB)= RB+#eAPTAB;

6. TOS=TOS+#eAPTAB+#eEVTAB+2

Cont.

 First statement increment TOS to point at the first

word of the new expansion record. This is reserved

pointer.

 Second statement deposits the address of the

previous record base into this word.

 New RB is established in statement 3.

 MEC and EVTAB_ptr set in statement 4 and 5

respectively.

At the end of Expansion

 The first statement pops an expansion record off

the stack by resetting TOS to the value it had while

the outer macro was being expanded.

 RB is then made to point at the base of previous

record.

No. Statement

1. TOS=RB-1;

2. RB = RB*;

Design of macro assembler

 Macro preprocessor followed by conventional

assembler is an expensive way of handling macro since

the number of passes over the source program is large

and many function get duplicated.

 Example:

 A source statement to detect macro calls require us to

process the mnemonic field. Similar function is required in

first pass of the assembler. Similar functions of the

preprocessor and assembler can be merged if macros are

handled by a macro assembler which perform macro

expansion and program assembly simultaneously.

Cont.

 Macro expansion perform in single pass is not true,

as certain kinds of forward references in macros

cannot be handled in a single pass.

 This problem leads to the classical two pass

organization for macro expansion.

 First pass collects information about the symbols

defined in a program.

 second pass perform macro expansion.

Cont.

 Pass structure of a macro-assembler

 First merge the function of macro preprocessor with the
function of conventional assembler, then the functions can be
structured into passes of the macro assembler.

 Pass-I

 Marco definition processing

 SYMTAB construction

 Pass-II

 Macro expansion

 Memory allocation and LC processing

 Processing of literals

 Intermediate code generation.

 Pass-III

 Target code generation.

Cont.

 The pass structure can be simplified if attributes of
actual parameter are not to be supported.

 Pass-I

Macro definition processing

Macro expansion

Memory allocation, LC Processing and SYMTAB
Construction

 Processing of Literals

 Intermediate code generation.

 Pass-II

 Target code generation.

Examples Questions

 Construct all data structure for the MACRO

MACRO

BECE6 &X, &Y, ®=BREG

AIF (&Y EQ 0) .EXIT

MOVER ®, &X

MUL ®, &Y

.EXIT MEND

 Generate the statement for these macro calls.

BECE6 6, 8, REG=AREG

BECE6 3,0

PNTAB EVNTAB

SSNTAB

X

Y

REG

-

EXIT

MNT BECE6 2 1 0 35 20 6

#PP #KP #EV MDTP KPDTP SSTP

KPDTAB 20 REG BREG SSTAB 6 35

MDT AIF (P,2) EQ 0 .(S,1)35

MOVER (P,3), (P,1) 36

MUL (P,3), (P,2)37

(S,1) MEND38

39

40

41

 Generate the statement for these macro calls.

BECE6 6, 8, REG=AREG

BECE6 3,0

 For first one BECE6 6, 8, REG=AREG

+ MOVER AREG, 6

+ MUL AREG, 8

